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Please note that I didn’t make any effort to distinguish the zero vector and the zero scalar throughout this document

1 Vector Spaces

1.1 Introduction

Theorem 1.0. Nobody cares about this section.

1.2 Vector Spaces
(pg- 6)

Definition. A wvector space V over a field F consists of a set on which two operations (called addition
and scalar multiplication, respectively) are defined so that for each pair of elements x, y, in V there is a
unique element x + y in V, and for each element a in F and each element x in V there is a unique element
az in 'V, such that the following conditions hold:

1. (VS 1) Forallx,yinV,x +y =y + x (commutativity of addition).
VS2) Forallx,y,zinV, (x +y) =z =x+ (v + 2) (associativity of addition)

VS 3) There exists an element in V denoted by 0 such that x + 0 = x for each x in V.

VS 5) For each element x in V, 1x = x.

(
(VS 2)
(VS 3)
. (VS 4) For each element x in V there exists an element y in V such that x +y = 0. (y = -x)
(VS 5)
(VS 6) For each pair of elements a, b in F, and each element x in V, (ab)x = a(bx).

(VST)

2
3
4
5.
6
7. (VS 7) For each element a in F and each pair of elements x, y in V, a(x + y) = ax + ay.

8. (VS 8) For each pair of elements a, b in F and each element x in V, (a + b)x = ax + bx

Theorem 1.1 (Cancellation Law for Vector Addition). If z, y, z are vectors in a vector space V such
that x + z = y + 2, then z = y.

Corollary. The vector 0 described in (VS 3) is unique.

Corollary. The vector y=-z described in (VS 4) is unique.

Theorem 1.2. In any vector space V, the following statements are true:
1. 0x = 0 for each x € V.
2. (-a)x = -(ax) = a(-x) for each a € F and each x € V
3. a0 =0 for each a € F.

1.3 Subspaces
(pg- 16)

Definition. A subset W of a vector space V over a field F is called a subspace of V if W is a vector space
over F with the operations of addition and scalar multiplication defined on V.

Theorem 1.3. Let V be a vector space and W a subset of V. Then W is a subspace of V if and only if the
following three conditions hold for the oprations defined in V.

1. Oy € W.
2. x +y € W whenever x € Wandy € W.
3. ¢cx € W whenever ¢c € F and x € W.
Theorem 1.4. Any intersection of subspaces of a vector space V is a subspace of V.
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1.4 Linear Combinations and Systems of Linear Equations

(pg. 24)
Definition. Let V be a vector space and S a nonempty subset of V. A wvector v € V is called a linear
combination of vectors of S if there exist a finite number of vectors uy, us, ..., u, in S and scalars ay, as, ..., an

in F such that v = aqui+agus+...+anty. In this case we also say that v is a linear combination of uy, ug, ..., Un
and call ay,as, ..., a, the coefficients of the linear combination.

Definition. Let S be a nonempty subset of a vector space V. The span of S, denoted span(S), is the set
consisting of all linear combinations of the vectors in S. For convenience, we define span(0) = {0}.

Theorem 1.5. The span of any subset S of a vector space V is a subspace of V. Moreover, any subspace of
V that contains S must also contain the span of S.

Definition. A subset S of a vector space V generates (or spans) V if span(S) = V. In this case, we also
say that the vectors of S generate (or span) V.

1.5 Linear Dependence and Linear Independence

(pg. 35)

Definition. A subset S of a vector space V is called linearly dependent if there exist a finite number of
distinct vectors uy, Us, ..., Uy n S and scalars ayi,as, ..., an, not all zero, such that

aiul + asvg + ... +apv, =0 (1)

For any vectors uy, ug, ..., Uy, we have aiuy + asus + ... + apuy, = 0 if a1 = a2 = ... = a, = 0. We call this
the trivial representation of 0 as a linear combination of ui,ua, ...Us,.

Definition. A subset S of a vector space that is not linearly dependent is called linearly independent. As
before, we also say that the vectors of S are linearly independent.

Theorem 1.6. Let V be a vector space, and let S1 C Sy C V. If Sy is linearly dependent, then Ss is linearly
dependent.

Corollary. Let V be a vector space, and let S1 C Sy C V. If Ss is linearly independent, then Si is linearly
independent.

Theorem 1.7. Let S be a linearly independent subset of a vector space V, and let v be a vector in V that is
not in S. Then S U {v} is linearly dependent if and only if v € span(S).

1.6 Bases and Dimension

(pg. 42)

Definition. A basis 8 for a vector space V is a linearly independent subset of V that generates V. If 3 is
a basis for V, we also say that the vectors of B form a basis for V.

Theorem 1.8. Let V be a vector space and B = {uy,us,...,u,} be a subset of V. Then B is a basis for V
if and only if each v € V can be uniquely expressed as a linear combination of vectors of B, that is, can be
expressed in the form

v = aiv] + agvs + ... + ayu, (2)

for unique scalars ay,a2, ..., a,.
Theorem 1.9. If a vector space V is generated by a finite set S, then some subset of S is a basis for V.

Hence V has a finite basis.
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Theorem 1.10 (Replacement Theorem). Let V be a vector space that is generated by a set G containing
exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then m < n
and there exists a subset H of G containing exactly n - m vectors such that L U H generates V.

Corollary. Let V be a vector space having a finite basis. Then every basis for V contains the same number
of vectors.

Definition. A wvector space is called finite-dimensional if it has a basis consisting of a finite number of
vectors. The unique number of vectors in each basis for V is called the dimension of V and is denoted by
dim(V). A vector space that is not finite-dimensional is called infinite-dimensional.

Corollary. Let V be a vector space with dimension n. Then

1. Any finite generating set for V contains at least n vectors, and a generating set for V that contains
exactly n vectors is a basis for V.

2. Any linearly independent subset of V that contains exactly n vectors is a basis for V.

3. Every linearly independent subset of V can be extended to a basis for V.

Theorem 1.11. Let W be a subspace of a finite-dimensional vector space V. Then W is finite-dimensional
and dim(W) < dim(V). Moreover, if dim(W) = dim(V), then V = W.

Corollary. If W is a subspace of a finite-dimensional vector space V, then any basis for W can be extended
to a basis for V.

2 Linear Transformations and Matrices

2.1 Linear Transformations, Null Spaces, and Ranges
(pg. 64)

Definition. Let V and W be vector spaces (over F). We call a function T: V— W a linear transformation
from Vto W if, for all z, y € V and ¢ € F, we have

1. T(x +y) = T(x) + T(y) and
2. T(cx) = cT(x)
Properties.
1. If T is linear, then T(0) = 0.
2. T is linear if and only if T(cx + y) = c¢T(x) + T(y) for all x, y € V and c € F.
3. If T is linear, then T(x-y) = T(x) - T(y) for all x, y € V.

4. T is linear if and only if, for z1,zs,...,x, € V and a1, as, ...,a, € F, we have
T(Z a;T;) = Z aiT(z;). (3)
i=1 i=1

We generally use property 2 to prove that a given transformation is linear.

Definition. Let V and W be vector spaces, and let T:V — W be linear. We define the null space (or kernel)
N(T) of T to be the set of all vectors x in V such that T(x) = 0; that is, N(T) = {x € V : T'(z) = 0}.

We define the range (or image) R(T) of T to be the subset of W consisting of all images (under T) of
vectors in V; that is, R(T) = {T(z): z € V}.
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Theorem 2.1. Let V and W be vector spaces and T: V — W be linear. Then N(T) and R(T) are subspaces
of V and W, respectively.

f

Theorem 2.2. Let V and W be vector spaces and T: V- — W be linear. If 8 = {v1,va,...,v,} is a basis for
V, then

R(T) = span(T(B)) = span({T'(v1), T (v2), ..., T (vn)})- (4)

Definition. Let V and W be vector spaces, and let T:V — W be linear.If N(T) and R(T) are finite-
dimensional, then we define the nullity of T, denoted nullity(T), and the rank of T, denoted rank(T), to be
the dimensions of N(T) and R(T), respectively.

Theorem 2.3 (Dimension Theorem). Let V and W be vector spaces and T: V. — W be linear. If V is
finite-dimensional, then
nullity(T) + rank(T) = dim(V'). (5)

Theorem 2.4. Let V and W be vector spaces and T: V. — W be linear. Then T is one-to-one if and only
if N(T) ={0}.

Theorem 2.5. Let V and W be vector spaces of equal (finite) dimension and T: V — W be linear. Then
the following are equivalent.

1. T is one-to-one.
2. T is onto.
3. rank(T) = dim(V).

Theorem 2.6. Let V and W be vector spaces over F, and suppose that {vy,va,...,v,} is a basis for V. For
{wy,we, ..., w,} in W, there exists exactly one linear transformation T: V — W such that T'(v;) = w; for i
=12 ..., n

Corollary. Let V and W be vector spaces, and suppose that V has a finite basis {vy,va, ..., v, }.
If U, T: V— W are linear and U(v;) =T (v;) for i =1, 2, ..., n, then U = T.

2.2 The Matrix Representation of a Linear Transformation
(pg. 79)

Definition. Let V be a finite-dimensional vector space. An ordered basis for V is a basis for V endowed
with a specific order; that is, an ordered basis for V is a finite sequence of linearly independent vectors in V
that generates V.

For the vector space F™, we call {e1,ea,...,e,} the standard ordered basis for F™. Similarly, for the
vector space P, (F), we call {1,z,...,2™} the standard ordered basis for P,(F).

Definition. Let 8 = {uy,us,...,u,} be an ordered basis for a finite-dimensional vector space V. For z € V,
let a1, as, ...,a, be the unique scalars such that

T = iaiui. (6)
i=1

we define the coordinate vector of r relative to 3, denoted [x]a, by
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Definition. Using the notation above, we call the mxn matriz A defined by A;; = a;; the matrix repre-
sentation of T in the ordered bases 5 and v and write A = [T]g If V.= W and 8 = v, then we write
A =Tp

Notice that the jth column of A is simply [T'(vj)]y. Also observe that if U: V. — W is a linear transfor-
mation such that [U]y = [T}, then U = T by the corollary to Theorem 2.6.

Definition. Let T, U: V — W be arbitrary functions, where V and W are vector spaces over F, and let a
€ F. Wedefine T+ U:V— Woy (T + U)(zx) =T(x) + Ux) for allz € V, and aT: V— W by (aT)(z)
= aT(z) for all z € V.

Theorem 2.7. Let V and W be vector spaces over field F, and let T, U: V — W be linear.

1. For all a € F, aT + U is linear.

2. Using the operations of addition and scalar multiplication in the preceding definition, the collection of
all linear transformations from V to W is a vector space over F.

Definition. Let V and W be vector spaces over F. We denote the vector space of all linear transformations

from Vinto W by L(V, W). In the case that V = W, we write L(V) instead.

Theorem 2.8. Let V and W be finite-dimensional vector spaces with ordered bases B and -y, respectively,
and let T, U: V — W be linear transformations. Then

L [T+UJ; = [T + [UT}

2. [aT]} = a[T]} for all scalars a

2.3 Composition of Linear Transformations and Matrix Multiplication

(pg. 86)

Theorem 2.9. Let V, W, and Z be vector spaces over the same field F, and let T: V— Wand U: W — Z
be linear. Then UT: V — Z is linear.

Theorem 2.10. Let V be a vector space. Let T, Uy, Uy € L(V). Then
1. T(U1 + U) =TU1 + TU; and (U + Us)T = UhT + UsT
2. T(UUs) = (TU,)U2
3. TI=IT=T
4. a(U1U3) = (aUy)Us = Uy (aUs) for all scalars a.

Definition. Let A be an mxn matriz and B be an nxp matriz. We define the product of A and B, denoted
AB, to be the mxp matriz such that

(AB)ij = _ AyByj for 1 <i<m,1<j<p. (8)
k=1

Theorem 2.11. Let V, W, and Z be finite-dimensional vector spaces with ordered bases o, 3, and 7y, respec-
tively. Let T: V. — W and U: W — Z be linear transformations. Then

[UT);, = UIITTA (9)

a

Corollary. Let V be a finite-dimensional vector space with an ordered basis 8. Let T, U € L(V). Then
[UT]s = [Uls[T]s

Page 6
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Definition. We define the Kronecker delta 6;; by 0;; = 1 if i = j and 0;; = 0 if i # j. The nxn identity
matrix I, is defined by (I,,)ij = 0;5. Thus, for example,

L=(),1= ((1) (D (10)
Theorem 2.12. Let A be an mxn matriz, B and C be nxp matrices, and D and E be ¢gxm matrices. Then
1. AB+ C) = AB + AC and (D + E)A = DA + EA.
2. a(AB) = (aA)B and (D + E)A = DA + EA for any scalar a.
3. I,A=A=AI,.
4. If V is an n-dimensional vector space with an ordered basis 3, then [Iy]|g = I,.

Corollary. Let A be an mxn matriz, By, Bs, ..., B be nxp matrices, C1,Cs, ..., Cy be gxm matrices, and
ai,as,...,ar be scalars. Then

k k
i=1 i=1
and
k k
i=1 i=1
Theorem 2.13. Let A be an mxn matriz and B be an nxp matriz. For each j (1 < j < p) let u; and v;
denote the jth column of AB and B, respectively. Then
1. Uj = Al}j
2. v; = Bej, where e, is the jth standard vector of F?.

Theorem 2.14. Let V and W be finite-dimensional vector spaces having ordered bases 8 and vy, respectively,
and let T: V. — W be linear. Then, for each u € V, we have

[T (u))y = [T13[uls (13)

Definition. Let A be an mxn matriz with entries from a field F. We denote by L4 the mapping L4 : F™ —
F™ defined by La(x) = Ax (the matriz product of A and x) for eachc column vector x € F™. We call La a
left-multiplication transformation.

Theorem 2.15. Let A be an mxn matrix with entries from F. Then the left-multiplication transformation
Ly : F™ — F™ is linear. Furthermore, if B is any other mxn matriz (with entries from F) and 8 and v are
the standard ordered bases for F™ and F™, respectively, then we have the following properties.

1. [LA]g =A
2. Ly =Lgifand only if A = B
3. Layp=Ls+Lpand Lyga=alL, forallaeF.

4. If T : F™ — F™ is linear, then there exists a unique mxn matrix C such that T = L¢. In fact, C =
[T]5-

5. If E is an nxp matrix, then Lyg = LaLEg

6. If m = n, then Ly, = Ipn
Theorem 2.16. Let A, B, and C be matrices such that A(BC) is defined. Then (AB)C is also defined and
A(BC) = (AB)C; that is, matriz multiplication is associative.

Page 7
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2.4 Invertibility and Isomorphisms

(pg- 99)

Definition. Let V and W be vector spaces, and let T: U — V be linear. A function U: W — V is said to be
an inverse of T if TU = Iy and UT = Iy. If T has an inverse, then T is said to be invertible. As noted
in appendiz B, if T is invertible, then the inverse of T is unique and is denoted by T—1.

The following facts hold for invertible functions T and U.
1. (ru)yt=v-tr-!
2. (T71)~! = T3 in particular, T~ is invertible.

3. Let T: V. — W be a linear transformation, where V and W are finite-dimensional spaces of equal
dimension. Then T is invertible if and only if rank(T) = dim(V).

Theorem 2.17. Let V and W be vector spaces, and let T: V — W be linear and invertible. Then T~ :
W —V is linear.

Definition. Let A be an nxn matrixz. Then A is invertible if there exists an nxn matrix B such that AB
=BA = 1.

If A is invertible, then the matriz B such that AB = BA = I is unique. (If C were another such matriz, then
C = CI = C(AB) = (CA)B = IB = B.) The matriz B is called the inverse of A and is denoted by A~*.

Lemma. Let T be an invertible linear transformation from V to W. Then V is finite-dimensional if and

only if W is finite-dimensional. In this case, dim(V) = dim(W).

Theorem 2.18. Let V and W be finite-dimensional vector spaces with ordered bases B and -y, respectively. Let

T: V= W be linear. Then T is invertible if and only if [T} is invertible. Furthermore, [T-15 = ([T}g)’l.

Corollary. Let V be a finite-dimensional vector space with an ordered basis 3, and let T: V — V be linear.
Then T is invertible if and only if [T)s is invertible. Furthermore, [T~1]5 = ([T]5)~".

Corollary. Let A be an nxn matriz. Then A is invertible if and only if L is invertible. Furthermore,
(LA)_l =L

Definition. Let V and W be vector spaces. We say that V is isomorphic to W if there exists a linear
transformation T: V — W that is invertible. Such a linear transformation is called an isomorphism from
V onto W.

Theorem 2.19. Let V and W be finite-dimensional vector spaces (over the same field). Then V is isomorphic
to W if and only if dim(V) = dim(W).

Corollary. Let V be a vecctor space over F. Then V is isomorphic to F™ if and only if dim(V) = n.

Theorem 2.20. Let V and W be finite-dimensional vector spaces over F of dimensions n and m, respectively,
and let B and ~y be ordered bases for V and W, respectively. Then the function ®: L(V, W) — M,,xn(F),
defined by ®(T) = [T} for T € L(V, W), is an isomorphism.

Corollary. Let V and W be finite-dimensional vector spaces of dimensions m and m, respectively. Then
L(V, W) is finite-dimensional of dimension mn.

Definition. Let 8 be an ordered basis for an n-dimensional vector space V over the field F. The standard
representation of V with respect to f is the function ¢g: V — F™, defined by ¢pg(x) = [z]g for each x
e V.

Theorem 2.21. For any finite-dimensional vector space V with ordered basis 3, ¢ is an isomorphism.

Page 8
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2.5 The Change of Coordinate Matrix
(pg. 110)

Theorem 2.22. Let 5 and B’ be two ordered bases for a finite-dimensional vector space V, and let @ =
[Iv]5,. Then

1. Q is invertible.

2. For any v € V, [v]g = Q[v]s.

Definition. The matriz QQ = [IV}B,, defined in Theorem 2.22 is called a change of coordinate matriz.
Because of part (b) of the theorem, we say that @) changes [3’-coordinates into [3-coordinates. Observe
that if B = {x1,22,...,x,} and B~ = {a}, 2}, ...,x},}, then

33; = Z wal (14)
i=1
forj =1, 2, ..., n; that is, the jth column of Q is [x%]a.

J

Theorem 2.23. Let T be a linear operator on a finite-dimensional vector spsace V, and let B and [’ be
ordered bases for V. Suppose that Q is the change of coordinate matriz that changes [('-coordinates into
[B-coordinates. Then

[T)s = Q' [T]sQ (15)

Corollary. Let A € My, (F), and let v be an ordered basis for F™. Then [Lal, = Q" 'AQ, where Q is
the nxn matriz whose jth column is the jth vector of ~y.

Definition. Let A and B be matrices in My,x,(F). We say that B is similar to A if there exists an
invertible matriz Q such that B = Q7 'AQ.

Aside. Determinants:

Definition. The determinant of an nxn matriz A having entries from a field F is a scalar in F, denoted
by det(A) or —A—, and can be computed in the following manner:

1. If A is 1x1, then det(A) = Aj1, the single entry of A.
2. If A is 2x2, then det(A) = Aj;Ass — Aj2As;. For example,

det (51 g) — (—1)(3) = (2)(5) = —13 (16)

3. If A is nxn for n > 2, then

n

det(A) = 3(~1)" Ay det(Ay) (17)

j=1
(if the determinant is evaluated by the entries of row i of A) or

n

det(A) =Y (1) Ayjdet(Ay;) (18)

=1

(if the determinant is evaluated by the entries of column j of A), where A;; is the (n- 1)x(n - 1) matrix
obtained by deleting row i and column j from A.

Properties. (of the Determinant)
Page 9
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1. If B is a matrix obtained by interchanging any two rows or interchanging any two columns of an nxn
matrix A, then det(B) = -det(A).

2. If B is a matrix obtained by multiplying each entry of some row or column of an nxn matrix A by a
scalar k. then det(B) = k-det(A).

3. If B is a matrix obtained from an nxn matrix A by adding a multiple of row i to row j or a multiple
of column i to column j for i # j, then det(B) = det(A).

4. The determinant of an upper triangular matrix is the product of its diagonal entries. In particular,
det(I) = 1.

5. If two rows (or columns) of a matrix are identical, then the determinant of the matrix is zero.
6. For any nxn matrices A and B, det(AB) = det(A)- det(B).

7. An nxn matrix A is invertible if and only if det(A) # 0. Furthermore, if A is invertible, then det(A~1)
_ 1
T det(A)”

8. For any nxn matrix A, the determinants of A and A? are equal.

9. If A and B are similar matrices, then det(A) = det(B).

3 Diagonalization

3.1 Eigenvalues and Eigenvectors

(pg- 245)

Definition. A linear operator T on a finite-dimensional vector space V is called diagonalizable if there is
an ordered basis 3 for V such that [T]s is a diagonal matriz. A square matriz A is called diagonalizable
if L4 is diagonalizable.

Definition. Let T be a linear operator on a vector space V. A nonzero vector v € V is called an eigenvector
of T if there exists a scalar X such that T(v) = Av. The scalar X is called the eigenvalue corresponding to
the eigenvector v

Let A be in My, xn(F). A nonzero vector v € F™ is called an eigenvector of A if v is an eigenvector of
Ly; that is, if Av = Av for some scalar \. The scalar X\ is called the eigenvalue of A corresponding to the
etgenvector v.

Theorem 5.1. A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if
there exists an ordered basis 8 for V consisting of eigenvectors of T. Furthermore, if T is diagonalizable,
B ={v1,v2,...,0,} is an ordered basis of eigenvectors of T, and D = [T|g, then D is a diagonal matric and
Dj; is the eigenvalue corresponding to v; for 1 < j < n.

Theorem 5.2. Let A € My, xn (F). Then a scalar X is an eigenvalue of A if and only if det(A - \I,,) = 0.

Definition. Let A € My, xn(F). The polynomial f(t) = det(A - tI,,) is called the characteristic polynomial
of A.

Definition. Let T be a linear operator on an n-dimensional vector space V with ordered basis 3. We define
the characteristic polynomial f(t) of T to be the characteristic polynomial of A = [T|g. That is, f(t) =
det(A - tI,).

Theorem 5.4. Let T be a linear operator on a vector space V, and let A be an eigenvalue of T. A vector v
€ Vis an eigenvector of T corresponding to A if and only if v# 0 and v € N(T - \I).

Page 10
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3.2 Diagonalizability
(pg. 261)

Theorem 5.5. Let T be a linear operator on a vector space V, and let A1, Ao, ..., A\ be distinct eigenvalues
of T. If v1,va,...,vx are eigenvectors of T such that \; corresponds to v; (1 < i < k), then {v1,va,...,vr} is
linearly independent.

Corollary. Let T be a linear operator on an n-dimensional vector space V. If T has n distinct eigenvalues,
then T is diagonalizable.

Definition. A polynomial f(t) P(F) splits over F if there are scalars ¢, ay, ..., an (not necessarily distinct
in F such that

f(t) =c(t —ar)(t —az)...(t — ap). (19)
Theorem 5.6. The characteristic polynomial of any diagonalizable linear operator splits.

Definition. Let A be an eigenvalue of a linear operator or matriz with the characteristic polynomial f(t).
The algebraic multiplicity of \ is the largest positive integer k for which (t - N\)* is a factor of f(t).

Definition. Let T be a linear operator on a vector space V, and let A be an eigenvalue of T. Define E)
={z eV :T(x) = x} = N(T — My. The set E) is called the eigenspace of T corresponding to the
eigenvalue X. Analogously, we define the eigenspace of a square matrix A to be the eigenspace of L 4.

Theorem 5.7. Let T be a linear operator on a finite-dimensional vector space V, and let X be an eigenvalue
of T having multiplicity m. Then 1 < dim(E)) < m.

Lemma. Let T be a linear operator, and let A1, s, ..., A\, be distict eigenvalues of T. For each i = 1, 2, ...,
k, let v; € Ey,, the eigenspace corresponding to A;. If

v1+ v+ ... +v =0. (20)
then v; = 0 for all i.

Theorem 5.8. Let T be a linear operator on a vector space V, and let A1, Ao, ..., A\ be distinct eigenvalues
of T. For each i = 1, 2, ..., k, let S; be a finite linearly independent subset of the eigenspace Ex,. Then S =
S1USyU...USy is a linearly independent subset of V.

Theorem 5.9. Let T be a linear operator on a finite-dimensional vector space V such that the characteristic
polynomial of T splits. Let A1, Ao, ..., A\ be the distinct eigenvalues of T. Then

1. T is diagonalizable if and only if the multiplicity of A; is equal to dim(E},) for all i.

2. If T is diagonalizable and f; is an ordered basis for Ey,, for each i, then f = 81 U2 U ... U B is an
ordered basis for V consisting of eigenvectors of T (8 is an eigenbasis).

Definition. Let Wy, Wy, ..., W}, be subspaces of a vector space V. We define the sum of these subspaces to
be the set
{vi+ve+ ... +vp:v; € Wiforl <i <k}, (21)

which we denote by W1 + Wo + ... + W}, or Zle W;.

Definition. Let W1, Wy, ..., Wy be subspaces of a vector space V. We call V the direct sum of the subspaces
Wi, Wa, ..., Wy, and write V=W, PWa P ... Wy, if

k
V=>W (22)
i=1
and
W, N Z:VVz = {0} for each j (1 <j<k). (23)

i#j
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4 Inner Product Spaces

4.1 Inner Products and Norms
(pg. 329)

Definition. Let V be a vector space over F. An inner product on V is a function that assigns, to every
ordered pair of vectors x and y in V, a scalar in F, denoted (x,y), such that for all z, y, and z in V and all
c in F, the following hold:

L (z+2y) = (x,9) + (z9)
(

cr,y) = c(@,y)

3. (x,y) = (y, ), where the bar denotes complex conjugation.

4. (x,z) > 0if x # 0.

Definition. Let A € My, xn(F). We define the conjugate transpose or adjoint of A to be the matriz A*
such that (Ax);; = Aj; for all i, j.

Theorem 6.1. Let V be an inner product space. Then for x. y. z € V and c € F, the following statements
are true.

1. (z,y+2) = (z,y) + (x, 2).

2. (z,cy,) = ez, y).

3. (z,0) = (0,z) = 0.

4. (z,z) = 0 if and only if x = 0.

5. If (x,y) = (x,2) for all z € V', then y = z.

Definition. Let V be an inner product space. For x € V, we define the norm or length of z by ||z|| =
(z, ).

Theorem 6.2. Let V be an inner product space over F. Then for all z, y € V and ¢ € F, the following
statements are true.

L lex|| = [ef =]
2. |z| = 0 if and only if x = 0. In any case, |z| > 0
3. (Cauchy Schwarz Inequality) |{(z,y)| < ||z|/||y]|

4. (Triangle Inequality) ||z + y|| < ||z|| + ||yl

Definition. Let V be an inner product space. Vectors x and y in V are orthogonal (perpendicular) if
(x,y) = 0. A subset S of V is orthogonal if any two distinct vectors in S are orthogonal. A vector x in V is
a unit vector if ||z|| = 1. Finally, a subset S of V is orthonormal if S is orthogonal and consists entirely
of unit vectors.

Page 12
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4.2 The Gram-Schmidt Orthogonalization Process and Orthogonal Comple-
ments

(pg. 341)

Definition. Let V be an inner product space. A subset of V is an orthonormal basis for V if it is an
ordered basis that is orthonormal.

Theorem 6.3. Let V be an inner product space and S = {v1, va, ..., v } be an orthogonal subset of V consisting
of nonzero vectors. If y € span(S), then

k .
y=3 <ﬂ,’ _]’(3 (24)

Corollary. If, in addition to the hypotheses of Theorem 6.3, S is orthonormal and y € span(S), then
k

Y= Z<yvvi>vi (25)

i=1
Corollary. Let V be an inner product space, and let S be an orthogonal subset of V consisting of nonzero
vectors. Then S is linearly independent.

Theorem 6.4 (Gram-Schmidt Process). Let V be an inner product space and S = {wy,wa, ..., w,} be a
linearly independent subset of V. Define S’ = {v1,va, ..., v, }, where v = wy and

k-1
<wk7vl>
vk:wk—z HUJHQJ vj for 2<k<n (26)
j=1

Theorem 6.5 . Let V be a nonzero finite-dimensional inner product space. Then V has an orthonormal
basis B. Furthermore, if B = {v1,v2,...,0n} and x € V, then

n

x = Z<$,U¢>Ui. (27)

i=1
Corollary. Let V be a finite-dimensional inner product space with an orthonormal basis § = {vy,va, ..., v, }.
Let T be a linear operator on V, and let A = [T]z. Then for any i and j, A;; = (T'(v;),v;).

Definition. Let 8 be an orthonormal subset (possibly infinite) of an inner product space V, and let x € V.
We define the Fourier coefficients of x relative to 8 to be the scalars (x,y), where y € 3.

Definition. Let S be a nonempty subset of an inner product space V. We define S* to be the set of all
vectors in V that are orthogonal to every vector in S; that is, S+ = {x € V : (x,y) = 0 for ally € S}. The
set St is called the orthogonal complement of S.

Theorem 6.6. Let W be a finite-dimensional subspace of an inner product spaceV, and let y € V. Then
there exist unique vectors uw € W and z € W+ such that y = u + z. Furthermore, if {vi,va,...,vx} is an
orthonormal basis for W, then

k
u= Z@/, ;) V5. (28)
i=1
Corollary. In the notation of Theoem 6.6, the vector u is the unique vector in W that is “closest” to y; that
is, for any x € W, |ly — z|| > ||y — ||, and this inequality is an equality if and only if © = w.
Definition. The vector u in the corollary is called the orthogonal projection of y on W.

Theorem 6.7. Suppose that S = {v1,va,...,v5} is an orthonormal set in an n-dimensional inner product
space V. Then

1. S can be extended to an orthonormal basis {v, va, ..., Uk, k41, ..., U } for V.
2. If W = span(S), then S; = {v411.V4+2, ..., U} is an orthonormal basis for W+.

3. If W is any subspace of V, then dim(V) = dim(W) + dim(W+).
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