Math 115A - All Theorems and Definitions Jonathan Chu

Contents

1 Vector Spaces 2
1.1 Introduction 2
1.2 Vector Spaces 2
1.3 Subspaces 2
1.4 Linear Combinations and Systems of Linear Equations 3
1.5 Linear Dependence and Linear Independence 3
1.6 Bases and Dimension 3
2 Linear Transformations and Matrices 4
2.1 Linear Transformations, Null Spaces, and Ranges 4
2.2 The Matrix Representation of a Linear Transformation 5
2.3 Composition of Linear Transformations and Matrix Multiplication 6
2.4 Invertibility and Isomorphisms 8
2.5 The Change of Coordinate Matrix 9
3 Diagonalization 10
3.1 Eigenvalues and Eigenvectors 10
3.2 Diagonalizability 11
4 Inner Product Spaces 12
4.1 Inner Products and Norms 12
4.2 The Gram-Schmidt Orthogonalization Process and Orthogonal Complements 13

Please note that I didn't make any effort to distinguish the zero vector and the zero scalar throughout this document

1 Vector Spaces

1.1 Introduction

Theorem 1.0. Nobody cares about this section.

1.2 Vector Spaces

(pg. 6)
Definition. A vector space V over a field F consists of a set on which two operations (called addition and scalar multiplication, respectively) are defined so that for each pair of elements x, y, in V there is a unique element $x+y$ in V, and for each element a in F and each element x in V there is a unique element ax in V, such that the following conditions hold:

1. (VS 1) For all x, y in $V, x+y=y+x$ (commutativity of addition).
2. (VS 2) For all x, y, z in $V,(x+y)=z=x+(y+z)$ (associativity of addition)
3. (VS 3) There exists an element in V denoted by 0 such that $\mathrm{x}+0=\mathrm{x}$ for each x in V .
4. (VS 4) For each element x in V there exists an element y in V such that $\mathrm{x}+\mathrm{y}=0$. $(\mathrm{y}=-\mathrm{x})$
5. (VS 5) For each element x in $\mathrm{V}, 1 \mathrm{x}=\mathrm{x}$.
6. (VS 6) For each pair of elements a, b in F, and each element x in $V,(a b) x=a(b x)$.
7. (VS 7) For each element a in F and each pair of elements x, y in $V, a(x+y)=a x+a y$.
8. (VS 8) For each pair of elements a, b in F and each element x in $V,(a+b) x=a x+b x$

Theorem 1.1 (Cancellation Law for Vector Addition). If x, y, z are vectors in a vector space V such that $x+z=y+z$, then $x=y$.

Corollary. The vector 0 described in (VS 3) is unique.
Corollary. The vector $y=-x$ described in (VS 4) is unique.
Theorem 1.2. In any vector space V, the following statements are true:

1. $0 x=0$ for each $x \in V$.
2. $(-a) x=-(a x)=a(-x)$ for each $a \in F$ and each $x \in V$
3. $\mathrm{a} 0=0$ for each $\mathrm{a} \in \mathrm{F}$.

1.3 Subspaces

(pg. 16)
Definition. A subset W of a vector space V over a field F is called a subspace of V if W is a vector space over F with the operations of addition and scalar multiplication defined on V.

Theorem 1.3. Let V be a vector space and W a subset of V. Then W is a subspace of V if and only if the following three conditions hold for the oprations defined in V.

1. $0_{V} \in \mathrm{~W}$.
2. $\mathrm{x}+\mathrm{y} \in \mathrm{W}$ whenever $\mathrm{x} \in \mathrm{W}$ and $\mathrm{y} \in \mathrm{W}$.
3. $c x \in W$ whenever $c \in F$ and $x \in W$.

Theorem 1.4. Any intersection of subspaces of a vector space V is a subspace of V.

1.4 Linear Combinations and Systems of Linear Equations

(pg. 24)
Definition. Let V be a vector space and S a nonempty subset of V. A vector $v \in V$ is called a linear combination of vectors of S if there exist a finite number of vectors $u_{1}, u_{2}, \ldots, u_{n}$ in S and scalars $a_{1}, a_{2}, \ldots, a_{n}$ in F such that $v=a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{n} u_{n}$. In this case we also say that v is a linear combination of $u_{1}, u_{2}, \ldots, u_{n}$ and call $a_{1}, a_{2}, \ldots, a_{n}$ the coefficients of the linear combination.

Definition. Let S be a nonempty subset of a vector space V. The span of S, denoted $\operatorname{span}(S)$, is the set consisting of all linear combinations of the vectors in S. For convenience, we define span(0) $=\{0\}$.

Theorem 1.5. The span of any subset S of a vector space V is a subspace of V. Moreover, any subspace of V that contains S must also contain the span of S.

Definition. A subset S of a vector space V generates (or spans) V if $\operatorname{span}(S)=V$. In this case, we also say that the vectors of S generate (or span) V.

1.5 Linear Dependence and Linear Independence

(pg. 35)
Definition. A subset S of a vector space V is called linearly dependent if there exist a finite number of distinct vectors $u_{1}, u_{2}, \ldots, u_{n}$ in S and scalars $a_{1}, a_{2}, \ldots, a_{n}$, not all zero, such that

$$
\begin{equation*}
a_{1} u_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}=0 \tag{1}
\end{equation*}
$$

For any vectors $u_{1}, u_{2}, \ldots, u_{n}$, we have $a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{n} u_{n}=0$ if $a_{1}=a_{2}=\ldots=a_{n}=0$. We call this the trivial representation of 0 as a linear combination of $u_{1}, u_{2}, \ldots u_{n}$.

Definition. A subset S of a vector space that is not linearly dependent is called linearly independent. As before, we also say that the vectors of S are linearly independent.

Theorem 1.6. Let V be a vector space, and let $S_{1} \subset S_{2} \subset V$. If S_{1} is linearly dependent, then S_{2} is linearly dependent.

Corollary. Let V be a vector space, and let $S_{1} \subset S_{2} \subset V$. If S_{2} is linearly independent, then S_{1} is linearly independent.

Theorem 1.7. Let S be a linearly independent subset of a vector space V, and let v be a vector in V that is not in S. Then $S \cup\{v\}$ is linearly dependent if and only if $v \in \operatorname{span}(S)$.

1.6 Bases and Dimension

(pg. 42)
Definition. A basis β for a vector space V is a linearly independent subset of V that generates V. If β is a basis for V, we also say that the vectors of β form a basis for V.

Theorem 1.8. Let V be a vector space and $\beta=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a subset of V. Then β is a basis for V if and only if each $v \in V$ can be uniquely expressed as a linear combination of vectors of β, that is, can be expressed in the form

$$
\begin{equation*}
v=a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} u_{n} \tag{2}
\end{equation*}
$$

for unique scalars $a_{1}, a 2, \ldots, a_{n}$.
Theorem 1.9. If a vector space V is generated by a finite set S, then some subset of S is a basis for V. Hence V has a finite basis.

Theorem 1.10 (Replacement Theorem). Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \leq n$ and there exists a subset H of G containing exactly $n-m$ vectors such that $L \cup H$ generates V.

Corollary. Let V be a vector space having a finite basis. Then every basis for V contains the same number of vectors.

Definition. A vector space is called finite-dimensional if it has a basis consisting of a finite number of vectors. The unique number of vectors in each basis for V is called the dimension of V and is denoted by $\operatorname{dim}(V)$. A vector space that is not finite-dimensional is called infinite-dimensional.

Corollary. Let V be a vector space with dimension n. Then

1. Any finite generating set for V contains at least n vectors, and a generating set for V that contains exactly n vectors is a basis for V .
2. Any linearly independent subset of V that contains exactly n vectors is a basis for V .
3. Every linearly independent subset of V can be extended to a basis for V .

Theorem 1.11. Let W be a subspace of a finite-dimensional vector space V. Then W is finite-dimensional and $\operatorname{dim}(W) \leq \operatorname{dim}(V)$. Moreover, if $\operatorname{dim}(W)=\operatorname{dim}(V)$, then $V=W$.

Corollary. If W is a subspace of a finite-dimensional vector space V, then any basis for W can be extended to a basis for V.

2 Linear Transformations and Matrices

2.1 Linear Transformations, Null Spaces, and Ranges

(pg. 64)
Definition. Let V and W be vector spaces (over F). We call a function $T: V \rightarrow W$ a linear transformation from V to W if, for all $x, y \in V$ and $c \in F$, we have

1. $T(x+y)=T(x)+T(y)$ and
2. $\mathrm{T}(\mathrm{cx})=\mathrm{cT}(\mathrm{x})$

Properties.

1. If T is linear, then $\mathrm{T}(0)=0$.
2. T is linear if and only if $T(c x+y)=c T(x)+T(y)$ for all $x, y \in V$ and $c \in F$.
3. If T is linear, then $T(x-y)=T(x)-T(y)$ for all $x, y \in V$.
4. T is linear if and only if, for $x_{1}, x_{2}, \ldots, x_{n} \in V$ and $a_{1}, a_{2}, \ldots, a_{n} \in \mathrm{~F}$, we have

$$
\begin{equation*}
T\left(\sum_{i=1}^{n} a_{i} x_{i}\right)=\sum_{i=1}^{n} a_{i} T\left(x_{i}\right) \tag{3}
\end{equation*}
$$

We generally use property 2 to prove that a given transformation is linear.
Definition. Let V and W be vector spaces, and let $T: V \rightarrow W$ be linear. We define the null space (or kernel) $N(T)$ of T to be the set of all vectors x in V such that $T(x)=\boldsymbol{O}$; that is, $N(T)=\{x \in V: T(x)=\boldsymbol{0}\}$.
We define the range (or image) $R(T)$ of T to be the subset of W consisting of all images (under T) of vectors in V; that is, $R(T)=\{T(x): x \in V\}$.

Theorem 2.1. Let V and W be vector spaces and $T: V \rightarrow W$ be linear. Then $N(T)$ and $R(T)$ are subspaces of V and W, respectively.
f
Theorem 2.2. Let V and W be vector spaces and $T: V \rightarrow W$ be linear. If $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V, then

$$
\begin{equation*}
R(T)=\operatorname{span}(T(\beta))=\operatorname{span}\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)\right\}\right) \tag{4}
\end{equation*}
$$

Definition. Let V and W be vector spaces, and let $T: V \rightarrow W$ be linear.If $N(T)$ and $R(T)$ are finitedimensional, then we define the nullity of T, denoted nullity (T), and the rank of T, denoted rank (T), to be the dimensions of $N(T)$ and $R(T)$, respectively.

Theorem 2.3 (Dimension Theorem). Let V and W be vector spaces and $T: V \rightarrow W$ be linear. If V is finite-dimensional, then

$$
\begin{equation*}
\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dim}(V) \tag{5}
\end{equation*}
$$

Theorem 2.4. Let V and W be vector spaces and $T: V \rightarrow W$ be linear. Then T is one-to-one if and only if $N(T)=\{\boldsymbol{0}\}$.

Theorem 2.5. Let V and W be vector spaces of equal (finite) dimension and $T: V \rightarrow W$ be linear. Then the following are equivalent.

1. T is one-to-one.
2. T is onto.
3. $\operatorname{rank}(\mathrm{T})=\operatorname{dim}(\mathrm{V})$.

Theorem 2.6. Let V and W be vector spaces over F, and suppose that $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V. For $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ in W, there exists exactly one linear transformation $T: V \rightarrow W$ such that $T\left(v_{i}\right)=w_{i}$ for i $=1,2, \ldots, n$.

Corollary. Let V and W be vector spaces, and suppose that V has a finite basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. If $U, T: V \rightarrow W$ are linear and $U\left(v_{i}\right)=T\left(v_{i}\right)$ for $i=1,2, \ldots, n$, then $U=T$.

2.2 The Matrix Representation of a Linear Transformation

(pg. 79)
Definition. Let V be a finite-dimensional vector space. An ordered basis for V is a basis for V endowed with a specific order; that is, an ordered basis for V is a finite sequence of linearly independent vectors in V that generates V.
For the vector space F^{n}, we call $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ the standard ordered basis for F^{n}. Similarly, for the vector space $P_{n}(F)$, we call $\left\{1, x, \ldots, x^{n}\right\}$ the standard ordered basis for $P_{n}(F)$.

Definition. Let $\beta=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be an ordered basis for a finite-dimensional vector space V. For $x \in V$, let $a_{1}, a_{2}, \ldots, a_{n}$ be the unique scalars such that

$$
\begin{equation*}
x=\sum_{i=1}^{n} a_{i} u_{i} \tag{6}
\end{equation*}
$$

we define the coordinate vector of x relative to β, denoted $[x]_{\beta}$, by

$$
[x]_{\beta}=\left(\begin{array}{c}
a_{1} \tag{7}\\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)
$$

Page 5

Definition. Using the notation above, we call the $m \times n$ matrix A defined by $A_{i j}=a_{i j}$ the matrix representation of \boldsymbol{T} in the ordered bases β and γ and write $A=[T]_{\beta}^{\gamma}$. If $V=W$ and $\beta=\gamma$, then we write $A=[T]_{\beta}$

Notice that the jth column of A is simply $\left[T\left(v_{j}\right)\right]_{\gamma}$. Also observe that if $U: V \rightarrow W$ is a linear transformation such that $[U]_{\beta}^{\gamma}=[T]_{\beta}^{\gamma}$, then $U=T$ by the corollary to Theorem 2.6.
Definition. Let $T, U: V \rightarrow W$ be arbitrary functions, where V and W are vector spaces over F, and let a $\in F$. We define $T+U: V \rightarrow W$ by $(T+U)(x)=T(x)+U(x)$ for all $x \in V$, and $a T: V \rightarrow W$ by $(a T)(x)$ $=a T(x)$ for all $x \in V$.

Theorem 2.7. Let V and W be vector spaces over field F, and let $T, U: V \rightarrow W$ be linear.

1. For all $\mathrm{a} \in \mathrm{F}, \mathrm{a} \mathrm{T}+\mathrm{U}$ is linear.
2. Using the operations of addition and scalar multiplication in the preceding definition, the collection of all linear transformations from V to W is a vector space over F .

Definition. Let V and W be vector spaces over F. We denote the vector space of all linear transformations from V into W by $L(V, W)$. In the case that $V=W$, we write $L(V)$ instead.

Theorem 2.8. Let V and W be finite-dimensional vector spaces with ordered bases β and γ, respectively, and let $T, U: V \rightarrow W$ be linear transformations. Then

1. $[T+U]_{\beta}^{\gamma}=[T]_{\beta}^{\gamma}+[U]_{\beta}^{\gamma}$
2. $[a T]_{\beta}^{\gamma}=a[T]_{\beta}^{\gamma}$ for all scalars a

2.3 Composition of Linear Transformations and Matrix Multiplication

(pg. 86)
Theorem 2.9. Let V, W, and Z be vector spaces over the same field F, and let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear. Then $U T: V \rightarrow Z$ is linear.

Theorem 2.10. Let V be a vector space. Let $T, U_{1}, U_{2} \in L(V)$. Then

1. $T\left(U_{1}+U_{2}\right)=T U_{1}+T U_{2}$ and $\left(U_{1}+U_{2}\right) T=U_{1} T+U_{2} T$
2. $T\left(U_{1} U_{2}\right)=\left(T U_{1}\right) U 2$
3. $\mathrm{TI}=\mathrm{IT}=\mathrm{T}$
4. $a\left(U_{1} U_{2}\right)=\left(a U_{1}\right) U_{2}=U_{1}\left(a U_{2}\right)$ for all scalars a.

Definition. Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. We define the product of A and B, denoted $A B$, to be the $m \times p$ matrix such that

$$
\begin{equation*}
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j} \text { for } 1 \leq i \leq m, 1 \leq j \leq p \tag{8}
\end{equation*}
$$

Theorem 2.11. Let V, W, and Z be finite-dimensional vector spaces with ordered bases α, β, and γ, respectively. Let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear transformations. Then

$$
\begin{equation*}
[U T]_{\alpha}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta} \tag{9}
\end{equation*}
$$

Corollary. Let V be a finite-dimensional vector space with an ordered basis β. Let $T, U \in L(V)$. Then $[U T]_{\beta}=[U]_{\beta}[T]_{\beta}$.

Definition. We define the Kronecker delta $\delta_{i j}$ by $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ if $i \neq j$. The $n \times n$ identity matrix I_{n} is defined by $\left(I_{n}\right)_{i j}=\delta_{i j}$. Thus, for example,

$$
I_{1}=(1), I_{2}=\left(\begin{array}{ll}
1 & 0 \tag{10}\\
0 & 1
\end{array}\right)
$$

Theorem 2.12. Let A be an $m \times n$ matrix, B and C be $n \times p$ matrices, and D and E be $q \times m$ matrices. Then

1. $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$ and $(\mathrm{D}+\mathrm{E}) \mathrm{A}=\mathrm{DA}+\mathrm{EA}$.
2. $\mathrm{a}(\mathrm{AB})=(\mathrm{aA}) \mathrm{B}$ and $(\mathrm{D}+\mathrm{E}) \mathrm{A}=\mathrm{DA}+\mathrm{EA}$ for any scalar a .
3. $I_{m} A=A=A I_{n}$.
4. If V is an n -dimensional vector space with an ordered basis β, then $\left[I_{V}\right]_{\beta}=I_{n}$.

Corollary. Let A be an $m \times n$ matrix, $B_{1}, B_{2}, \ldots, B_{k}$ be $n \times p$ matrices, $C_{1}, C_{2}, \ldots, C_{k}$ be $q \times m$ matrices, and $a_{1}, a_{2}, \ldots, a_{k}$ be scalars. Then

$$
\begin{equation*}
A\left(\sum_{i=1}^{k} a_{i} B_{i}\right)=\sum_{i=1}^{k} a_{i} A B_{i} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\sum_{i=1}^{k} a_{i} C_{i}\right) A=\sum_{i=1}^{k} a_{i} C_{i} A \tag{12}
\end{equation*}
$$

Theorem 2.13. Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. For each $j(1 \leq j \leq p)$ let u_{j} and v_{j} denote the jth column of $A B$ and B, respectively. Then

1. $u_{j}=A v_{j}$
2. $v_{j}=B e_{j}$, where e_{j} is the jth standard vector of F^{p}.

Theorem 2.14. Let V and W be finite-dimensional vector spaces having ordered bases β and γ, respectively, and let $T: V \rightarrow W$ be linear. Then, for each $u \in V$, we have

$$
\begin{equation*}
[T(u)]_{\gamma}=[T]_{\beta}^{\gamma}[u]_{\beta} \tag{13}
\end{equation*}
$$

Definition. Let A be an $m \times n$ matrix with entries from a field F. We denote by L_{A} the mapping $L_{A}: F^{n} \rightarrow$ F^{m} defined by $L_{A}(x)=A x$ (the matrix product of A and x) for eachc column vector $x \in F^{n}$. We call $L_{A} a$ left-multiplication transformation.

Theorem 2.15. Let A be an $m \times n$ matrix with entries from F. Then the left-multiplication transformation $L_{A}: F^{n} \rightarrow F^{m}$ is linear. Furthermore, if B is any other $m \times n$ matrix (with entries from F) and β and γ are the standard ordered bases for F^{n} and F^{m}, respectively, then we have the following properties.

1. $\left[L_{A}\right]_{\beta}^{\gamma}=\mathrm{A}$
2. $L_{A}=L_{B}$ if and only if $\mathrm{A}=\mathrm{B}$
3. $L_{A+B}=L_{A}+L_{B}$ and $L_{a A}=a L_{A}$ for all a $\in \mathrm{F}$.
4. If $T: F^{n} \rightarrow F^{m}$ is linear, then there exists a unique $\mathrm{m} \times \mathrm{n}$ matrix C such that $\mathrm{T}=L_{C}$. In fact, $\mathrm{C}=$ $[T]_{\beta}^{\gamma}$.
5. If E is an $\mathrm{n} \times \mathrm{p}$ matrix, then $L_{A E}=L_{A} L_{E}$
6. If $\mathrm{m}=\mathrm{n}$, then $L_{I_{n}}=I_{F^{n}}$

Theorem 2.16. Let A, B, and C be matrices such that $A(B C)$ is defined. Then $(A B) C$ is also defined and $A(B C)=(A B) C$; that is, matrix multiplication is associative.

2.4 Invertibility and Isomorphisms

(pg. 99)
Definition. Let V and W be vector spaces, and let $T: U \rightarrow V$ be linear. A function $U: W \rightarrow V$ is said to be an inverse of T if $T U=I_{W}$ and $U T=I_{V}$. If T has an inverse, then T is said to be invertible. As noted in appendix B, if T is invertible, then the inverse of T is unique and is denoted by T^{-1}.

The following facts hold for invertible functions T and U .

1. $(T U)^{-1}=U^{-1} T^{-1}$
2. $\left(T^{-1}\right)^{-1}=T$; in particular, T^{-1} is invertible.
3. Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation, where V and W are finite-dimensional spaces of equal dimension. Then T is invertible if and only if $\operatorname{rank}(T)=\operatorname{dim}(V)$.

Theorem 2.17. Let V and W be vector spaces, and let $T: V \rightarrow W$ be linear and invertible. Then T^{-1} : $W \rightarrow V$ is linear.

Definition. Let A be an $n \times n$ matrix. Then A is invertible if there exists an $n \times n$ matrix B such that $A B$ $=B A=1$.
If A is invertible, then the matrix B such that $A B=B A=I$ is unique. (If C were another such matrix, then $C=C I=C(A B)=(C A) B=I B=B$.) The matrix B is called the inverse of A and is denoted by A^{-1}.

Lemma. Let T be an invertible linear transformation from V to W. Then V is finite-dimensional if and only if W is finite-dimensional. In this case, $\operatorname{dim}(V)=\operatorname{dim}(W)$.

Theorem 2.18. Let V and W be finite-dimensional vector spaces with ordered bases β and γ, respectively. Let $T: V \rightarrow W$ be linear. Then T is invertible if and only if $[T]_{\beta}^{\gamma}$ is invertible. Furthermore, $\left[T^{-1}\right]_{\gamma}^{\beta}=\left([T]_{\beta}^{\gamma}\right)^{-1}$.

Corollary. Let V be a finite-dimensional vector space with an ordered basis β, and let $T: V \rightarrow V$ be linear. Then T is invertible if and only if $[T]_{\beta}$ is invertible. Furthermore, $\left[T^{-1}\right]_{\beta}=\left([T]_{\beta}\right)^{-1}$.

Corollary. Let A be an $n \times n$ matrix. Then A is invertible if and only if L_{A} is invertible. Furthermore, $\left(L_{A}\right)^{-1}=L_{A^{-1}}$.

Definition. Let V and W be vector spaces. We say that V is isomorphic to W if there exists a linear transformation $T: V \rightarrow W$ that is invertible. Such a linear transformation is called an isomorphism from V onto W.

Theorem 2.19. Let V and W be finite-dimensional vector spaces (over the same field). Then V is isomorphic to W if and only if $\operatorname{dim}(V)=\operatorname{dim}(W)$.

Corollary. Let V be a vecctor space over F. Then V is isomorphic to F^{n} if and only if $\operatorname{dim}(V)=n$.
Theorem 2.20. Let V and W be finite-dimensional vector spaces over F of dimensions n and m, respectively, and let β and γ be ordered bases for V and W, respectively. Then the function $\Phi: L(V, W) \rightarrow M_{m \times n}(F)$, defined by $\Phi(T)=[T]_{\beta}^{\gamma}$ for $T \in L(V, W)$, is an isomorphism.

Corollary. Let V and W be finite-dimensional vector spaces of dimensions n and m, respectively. Then $L(V, W)$ is finite-dimensional of dimension mn.

Definition. Let β be an ordered basis for an n-dimensional vector space V over the field F. The standard representation of \boldsymbol{V} with respect to β is the function $\phi_{\beta}: V \rightarrow F^{n}$, defined by $\phi_{\beta}(x)=[x]_{\beta}$ for each x $\in V$.

Theorem 2.21. For any finite-dimensional vector space V with ordered basis β, ϕ_{β} is an isomorphism.

2.5 The Change of Coordinate Matrix

(pg. 110)
Theorem 2.22. Let β and β ' be two ordered bases for a finite-dimensional vector space V, and let $Q=$ $\left[I_{V}\right]_{\beta^{\prime}}^{\beta}$. Then

1. Q is invertible.
2. For any $\mathrm{v} \in \mathrm{V},[v]_{\beta}=Q[v]_{\beta^{\prime}}$.

Definition. The matrix $Q=\left[I_{V}\right]_{\beta^{\prime}}^{\beta}$, defined in Theorem 2.22 is called a change of coordinate matrix. Because of part (b) of the theorem, we say that Q changes β '-coordinates into β-coordinates. Observe that if $\beta=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\beta^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\}$, then

$$
\begin{equation*}
x_{j}^{\prime}=\sum_{i=1}^{n} Q_{i j} x_{i} \tag{14}
\end{equation*}
$$

for $j=1,2, \ldots, n$; that is, the j th column of Q is $\left[x_{j}^{\prime}\right]_{\beta}$.
Theorem 2.23. Let T be a linear operator on a finite-dimensional vector spsace V, and let β and β^{\prime} be ordered bases for V. Suppose that Q is the change of coordinate matrix that changes β^{\prime}-coordinates into β-coordinates. Then

$$
\begin{equation*}
[T]_{\beta^{\prime}}=Q^{-1}[T]_{\beta} Q \tag{15}
\end{equation*}
$$

Corollary. Let $A \in M_{m \times n}(F)$, and let γ be an ordered basis for F^{n}. Then $\left[L_{A}\right]_{\gamma}=Q^{-1} A Q$, where Q is the $n \times n$ matrix whose j th column is the j th vector of γ.

Definition. Let A and B be matrices in $M_{m \times n}(F)$. We say that B is similar to A if there exists an invertible matrix Q such that $B=Q^{-1} A Q$.

Aside. Determinants:

Definition. The determinant of an $n \times n$ matrix A having entries from a field F is a scalar in F, denoted by $\operatorname{det}(A)$ or $-A-$, and can be computed in the following manner:

1. If A is 1×1, then $\operatorname{det}(\mathrm{A})=A_{11}$, the single entry of A .
2. If A is 2×2, then $\operatorname{det}(\mathrm{A})=A_{11} A_{22}-A_{12} A_{21}$. For example,

$$
\operatorname{det}\left(\begin{array}{cc}
-1 & 2 \tag{16}\\
5 & 3
\end{array}\right)=(-1)(3)-(2)(5)=-13
$$

3. If A is $\mathrm{n} \times \mathrm{n}$ for $\mathrm{n}>2$, then

$$
\begin{equation*}
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} A_{i j} \operatorname{det}\left(A_{i j}\right) \tag{17}
\end{equation*}
$$

(if the determinant is evaluated by the entries of row i of A) or

$$
\begin{equation*}
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} A_{i j} \operatorname{det}\left(A_{i j}\right) \tag{18}
\end{equation*}
$$

(if the determinant is evaluated by the entries of column j of A), where $A_{i j}$ is the $(\mathrm{n}-1) \times(\mathrm{n}-1)$ matrix obtained by deleting row i and column j from A .

Properties. (of the Determinant)
Page 9

1. If B is a matrix obtained by interchanging any two rows or interchanging any two columns of an $n \times n$ matrix A, then $\operatorname{det}(B)=-\operatorname{det}(A)$.
2. If B is a matrix obtained by multiplying each entry of some row or column of an $\mathrm{n} \times \mathrm{n}$ matrix A by a scalar k. then $\operatorname{det}(B)=k \cdot \operatorname{det}(A)$.
3. If B is a matrix obtained from an $\mathrm{n} \times \mathrm{n}$ matrix A by adding a multiple of row i to row j or a multiple of column i to column j for $i \neq j$, then $\operatorname{det}(B)=\operatorname{det}(A)$.
4. The determinant of an upper triangular matrix is the product of its diagonal entries. In particular, $\operatorname{det}(\mathrm{I})=1$.
5. If two rows (or columns) of a matrix are identical, then the determinant of the matrix is zero.
6. For any $n \times n$ matrices A and $B, \operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$.
7. An $\mathrm{n} \times \mathrm{n}$ matrix A is invertible if and only if $\operatorname{det}(\mathrm{A}) \neq 0$. Furthermore, if A is invertible, then $\operatorname{det}\left(A^{-1}\right)$ $=\frac{1}{\operatorname{det}(A)}$.
8. For any $\mathrm{n} \times \mathrm{n}$ matrix A , the determinants of A and A^{t} are equal.
9. If A and B are similar matrices, then $\operatorname{det}(A)=\operatorname{det}(B)$.

3 Diagonalization

3.1 Eigenvalues and Eigenvectors

(pg. 245)
Definition. A linear operator T on a finite-dimensional vector space V is called diagonalizable if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix. A square matrix A is called diagonalizable if L_{A} is diagonalizable.

Definition. Let T be a linear operator on a vector space V. A nonzero vector $v \in V$ is called an eigenvector of T if there exists a scalar λ such that $T(v)=\lambda v$. The scalar λ is called the eigenvalue corresponding to the eigenvector v
Let A be in $M_{m \times n}(F)$. A nonzero vector $v \in F^{n}$ is called an eigenvector of A if v is an eigenvector of L_{A}; that is, if $A v=\lambda v$ for some scalar λ. The scalar λ is called the eigenvalue of A corresponding to the eigenvector v.

Theorem 5.1. A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there exists an ordered basis β for V consisting of eigenvectors of T. Furthermore, if T is diagonalizable, $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an ordered basis of eigenvectors of T, and $D=[T]_{\beta}$, then D is a diagonal matrix and $D_{j j}$ is the eigenvalue corresponding to v_{j} for $1 \leq j \leq n$.

Theorem 5.2. Let $A \in M_{m \times n}(F)$. Then a scalar λ is an eigenvalue of A if and only if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$.
Definition. Let $A \in M_{n \times n}(F)$. The polynomial $f(t)=\operatorname{det}\left(A-t I_{n}\right)$ is called the characteristic polynomial of A.

Definition. Let T be a linear operator on an n-dimensional vector space V with ordered basis β. We define the characteristic polynomial $f(t)$ of T to be the characteristic polynomial of $A=[T]_{\beta}$. That is, $f(t)=$ $\operatorname{det}\left(A-t I_{n}\right)$.

Theorem 5.4. Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. A vector v $\in V$ is an eigenvector of T corresponding to λ if and only if $v \neq 0$ and $v \in N(T-\lambda I)$.

3.2 Diagonalizability

(pg. 261)
Theorem 5.5. Let T be a linear operator on a vector space V, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be distinct eigenvalues of T. If $v_{1}, v_{2}, \ldots, v_{k}$ are eigenvectors of T such that λ_{i} corresponds to $v_{i}(1 \leq i \leq k)$, then $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent.

Corollary. Let T be a linear operator on an n-dimensional vector space V. If T has n distinct eigenvalues, then T is diagonalizable.

Definition. A polynomial $f(t) P(F)$ splits over F if there are scalars c, a_{1}, \ldots, a_{n} (not necessarily distinct in F such that

$$
\begin{equation*}
f(t)=c\left(t-a_{1}\right)\left(t-a_{2}\right) \ldots\left(t-a_{n}\right) \tag{19}
\end{equation*}
$$

Theorem 5.6. The characteristic polynomial of any diagonalizable linear operator splits.
Definition. Let λ be an eigenvalue of a linear operator or matrix with the characteristic polynomial $f(t)$. The algebraic multiplicity of λ is the largest positive integer k for which $(t-\lambda)^{k}$ is a factor of $f(t)$.

Definition. Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. Define E_{λ} $=\{x \in V: T(x)=\lambda x\}=N\left(T-\lambda I_{V}\right.$. The set E_{λ} is called the eigenspace of T corresponding to the eigenvalue λ. Analogously, we define the eigenspace of a square matrix A to be the eigenspace of L_{A}.

Theorem 5.7. Let T be a linear operator on a finite-dimensional vector space V, and let λ be an eigenvalue of T having multiplicity m. Then $1 \leq \operatorname{dim}\left(E_{\lambda}\right) \leq m$.

Lemma. Let T be a linear operator, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be distict eigenvalues of T. For each $i=1,2, \ldots$, k, let $v_{i} \in E_{\lambda_{i}}$, the eigenspace corresponding to λ_{i}. If

$$
\begin{equation*}
v_{1}+v_{2}+\ldots+v_{k}=0 \tag{20}
\end{equation*}
$$

then $v_{i}=0$ for all i.
Theorem 5.8. Let T be a linear operator on a vector space V, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be distinct eigenvalues of T. For each $i=1,2, \ldots, k$, let S_{i} be a finite linearly independent subset of the eigenspace $E_{\lambda_{i}}$. Then $S=$ $S_{1} \cup S_{2} \cup \ldots \cup S_{k}$ is a linearly independent subset of V.

Theorem 5.9. Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the distinct eigenvalues of T. Then

1. T is diagonalizable if and only if the multiplicity of λ_{i} is equal to $\operatorname{dim}\left(E_{\lambda_{i}}\right)$ for all i.
2. If T is diagonalizable and β_{i} is an ordered basis for $E_{\lambda_{i}}$, for each i , then $\beta=\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{k}$ is an ordered basis for V consisting of eigenvectors of T (β is an eigenbasis).

Definition. Let $W_{1}, W_{2}, \ldots, W_{k}$ be subspaces of a vector space V. We define the sum of these subspaces to be the set

$$
\begin{equation*}
\left\{v_{1}+v_{2}+\ldots+v_{k}: v_{i} \in W_{i} \text { for } 1 \leq i \leq k\right\} \tag{21}
\end{equation*}
$$

which we denote by $W_{1}+W_{2}+\ldots+W_{k}$ or $\sum_{i=1}^{k} W_{i}$.
Definition. Let $W_{1}, W_{2}, \ldots, W_{k}$ be subspaces of a vector space V. We call V the direct sum of the subspaces $W_{1}, W_{2}, \ldots, W_{k}$ and write $V=W_{1} \bigoplus W_{2} \bigoplus \ldots \bigoplus W_{k}$, if

$$
\begin{equation*}
V=\sum_{i=1}^{k} W_{i} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{j} \cap \sum_{i \neq j} W_{i}=\{0\} \text { for each } j(1 \leq j \leq k) \tag{23}
\end{equation*}
$$

4 Inner Product Spaces

4.1 Inner Products and Norms

(pg. 329)
Definition. Let V be a vector space over F. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F, denoted $\langle x, y\rangle$, such that for all x, y, and z in V and all c in F, the following hold:

1. $\langle x+z, y\rangle=\langle x, y\rangle+\langle z, y\rangle$
2. $\langle c x, y\rangle=c\langle x, y\rangle$
3. $\overline{\langle x, y\rangle}=\langle y, x\rangle$, where the bar denotes complex conjugation.
4. $\langle x, x\rangle>0$ if $\mathrm{x} \neq 0$.

Definition. Let $A \in M_{m \times n}(F)$. We define the conjugate transpose or adjoint of A to be the matrix A * such that $(A *)_{i j}=\overline{A_{j i}}$ for all i, j.

Theorem 6.1. Let V be an inner product space. Then for $x . y . z \in V$ and $c \in F$, the following statements are true.

1. $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$.
2. $\langle x, c y\rangle=,\bar{c}\langle x, y\rangle$.
3. $\langle x, 0\rangle=\langle 0, x\rangle=0$.
4. $\langle x, x\rangle=0$ if and only if $\mathrm{x}=0$.
5. If $\langle x, y\rangle=\langle x, z\rangle$ for all $x \in V$, then $\mathrm{y}=\mathrm{z}$.

Definition. Let V be an inner product space. For $x \in V$, we define the norm or length of x by $\|x\|=$ $\sqrt{\langle x, x\rangle}$.

Theorem 6.2. Let V be an inner product space over F. Then for all $x, y \in V$ and $c \in F$, the following statements are true.

1. $\|c x\|=|c|\|x\|$
2. $|x|=0$ if and only if $\mathrm{x}=0$. In any case, $|x| \geq 0$
3. (Cauchy Schwarz Inequality) $|\langle x, y\rangle| \leq\|x\|\|y\|$
4. (Triangle Inequality) $\|x+y\| \leq\|x\|+\|y\|$

Definition. Let V be an inner product space. Vectors x and y in V are orthogonal (perpendicular) if $\langle x, y\rangle=0$. A subset S of V is orthogonal if any two distinct vectors in S are orthogonal. A vector x in V is a unit vector if $\|x\|=1$. Finally, a subset S of V is orthonormal if S is orthogonal and consists entirely of unit vectors.

4.2 The Gram-Schmidt Orthogonalization Process and Orthogonal Complements

(pg. 341)
Definition. Let V be an inner product space. A subset of V is an orthonormal basis for V if it is an ordered basis that is orthonormal.

Theorem 6.3. Let V be an inner product space and $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be an orthogonal subset of V consisting of nonzero vectors. If $y \in \operatorname{span}(S)$, then

$$
\begin{equation*}
y=\sum_{i=1}^{k} \frac{\left\langle y, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} v_{i} \tag{24}
\end{equation*}
$$

Corollary. If, in addition to the hypotheses of Theorem 6.3, S is orthonormal and $y \in \operatorname{span}(S)$, then

$$
\begin{equation*}
y=\sum_{i=1}^{k}\left\langle y, v_{i}\right\rangle v_{i} \tag{25}
\end{equation*}
$$

Corollary. Let V be an inner product space, and let S be an orthogonal subset of V consisting of nonzero vectors. Then S is linearly independent.

Theorem 6.4 (Gram-Schmidt Process). Let V be an inner product space and $S=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be a linearly independent subset of V. Define $S^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, where $v_{1}=w_{1}$ and

$$
\begin{equation*}
v_{k}=w_{k}-\sum_{j=1}^{k-1} \frac{\left\langle w_{k}, v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}} v_{j} \text { for } 2 \leq k \leq n \tag{26}
\end{equation*}
$$

Theorem 6.5 . Let V be a nonzero finite-dimensional inner product space. Then V has an orthonormal basis β. Furthermore, if $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $x \in V$, then

$$
\begin{equation*}
x=\sum_{i=1}^{n}\left\langle x, v_{i}\right\rangle v_{i} . \tag{27}
\end{equation*}
$$

Corollary. Let V be a finite-dimensional inner product space with an orthonormal basis $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let T be a linear operator on V, and let $A=[T]_{\beta}$. Then for any i and $j, A_{i j}=\left\langle T\left(v_{j}\right), v_{i}\right\rangle$.
Definition. Let β be an orthonormal subset (possibly infinite) of an inner product space V, and let $x \in V$. We define the Fourier coefficients of x relative to β to be the scalars $\langle x, y\rangle$, where $y \in \beta$.
Definition. Let S be a nonempty subset of an inner product space V. We define S^{\perp} to be the set of all vectors in V that are orthogonal to every vector in S; that is, $S^{\perp}=\{x \in V:\langle x, y\rangle=0$ for all $y \in S\}$. The set S^{\perp} is called the orthogonal complement of S.

Theorem 6.6. Let W be a finite-dimensional subspace of an inner product space V, and let $y \in V$. Then there exist unique vectors $u \in W$ and $z \in W^{\perp}$ such that $y=u+z$. Furthermore, if $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is an orthonormal basis for W, then

$$
\begin{equation*}
u=\sum_{i=1}^{k}\left\langle y, v_{i}\right\rangle v_{i} \tag{28}
\end{equation*}
$$

Corollary. In the notation of Theoem 6.6, the vector u is the unique vector in W that is "closest" to y; that is, for any $x \in W,\|y-x\| \geq\|y-u\|$, and this inequality is an equality if and only if $x=u$.
Definition. The vector u in the corollary is called the orthogonal projection of y on W.
Theorem 6.7. Suppose that $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is an orthonormal set in an n-dimensional inner product space V. Then

1. S can be extended to an orthonormal basis $\left\{v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ for V .
2. If $\mathrm{W}=\operatorname{span}(\mathrm{S})$, then $S_{1}=\left\{v_{k+1} . v_{k+2}, \ldots, v_{n}\right\}$ is an orthonormal basis for W^{\perp}.
3. If W is any subspace of V , then $\operatorname{dim}(\mathrm{V})=\operatorname{dim}(\mathrm{W})+\operatorname{dim}\left(\mathrm{W}^{\perp}\right)$.
