Math 115A - All Theorems and Definitions $_{\rm Jonathan\ Chu}$

Contents

1	Vec	tor Spaces	2
	1.1	Introduction	2
	1.2	Vector Spaces	2
	1.3	Subspaces	2
	1.4	Linear Combinations and Systems of Linear Equations	3
	1.5	Linear Dependence and Linear Independence	3
	1.6	Bases and Dimension	3
2	Linear Transformations and Matrices		
	2.1	Linear Transformations, Null Spaces, and Ranges	4
	2.2	The Matrix Representation of a Linear Transformation	5
	2.3	Composition of Linear Transformations and Matrix Multiplication	6
	2.4	Invertibility and Isomorphisms	8
	2.5	The Change of Coordinate Matrix	9
3	Diagonalization		10
	3.1	Eigenvalues and Eigenvectors	10
	3.2		11
4	Inner Product Spaces		
	4.1	-	12
	4.2	The Gram-Schmidt Orthogonalization Process and Orthogonal Complements $\ldots \ldots \ldots$	13

Please note that I didn't make any effort to distinguish the zero vector and the zero scalar throughout this document

1 Vector Spaces

1.1 Introduction

Theorem 1.0. Nobody cares about this section.

1.2 Vector Spaces

(pg. 6)

Definition. A vector space V over a field F consists of a set on which two operations (called addition and scalar multiplication, respectively) are defined so that for each pair of elements x, y, in V there is a unique element x + y in V, and for each element a in F and each element x in V there is a unique element a in V, such that the following conditions hold:

- 1. (VS 1) For all x, y in V, x + y = y + x (commutativity of addition).
- 2. (VS 2) For all x, y, z in V, (x + y) = z = x + (y + z) (associativity of addition)
- 3. (VS 3) There exists an element in V denoted by 0 such that x + 0 = x for each x in V.
- 4. (VS 4) For each element x in V there exists an element y in V such that x + y = 0. (y = -x)
- 5. (VS 5) For each element x in V, 1x = x.
- 6. (VS 6) For each pair of elements a, b in F, and each element x in V, (ab)x = a(bx).
- 7. (VS 7) For each element a in F and each pair of elements x, y in V, a(x + y) = ax + ay.
- 8. (VS 8) For each pair of elements a, b in F and each element x in V, (a + b)x = ax + bx

Theorem 1.1 (Cancellation Law for Vector Addition). If x, y, z are vectors in a vector space V such that x + z = y + z, then x = y.

Corollary. The vector 0 described in (VS 3) is unique.

Corollary. The vector y=-x described in (VS 4) is unique.

Theorem 1.2. In any vector space V, the following statements are true:

- 1. 0x = 0 for each $x \in V$.
- 2. (-a)x = -(ax) = a(-x) for each $a \in F$ and each $x \in V$
- 3. a0 = 0 for each $a \in F$.

1.3 Subspaces

(pg. 16)

Definition. A subset W of a vector space V over a field F is called a **subspace** of V if W is a vector space over F with the operations of addition and scalar multiplication defined on V.

Theorem 1.3. Let V be a vector space and W a subset of V. Then W is a subspace of V if and only if the following three conditions hold for the oprations defined in V.

- 1. $0_V \in W$.
- 2. $x + y \in W$ whenever $x \in W$ and $y \in W$.
- 3. $cx \in W$ whenever $c \in F$ and $x \in W$.

Theorem 1.4. Any intersection of subspaces of a vector space V is a subspace of V.

1.4 Linear Combinations and Systems of Linear Equations

(pg. 24)

Definition. Let V be a vector space and S a nonempty subset of V. A vector $v \in V$ is called a **linear** combination of vectors of S if there exist a finite number of vectors $u_1, u_2, ..., u_n$ in S and scalars $a_1, a_2, ..., a_n$ in F such that $v = a_1u_1 + a_2u_2 + ... + a_nu_n$. In this case we also say that v is a linear combination of $u_1, u_2, ..., u_n$ and call $a_1, a_2, ..., a_n$ the coefficients of the linear combination.

Definition. Let S be a nonempty subset of a vector space V. The **span** of S, denoted span(S), is the set consisting of all linear combinations of the vectors in S. For convenience, we define $span(0) = \{0\}$.

Theorem 1.5. The span of any subset S of a vector space V is a subspace of V. Moreover, any subspace of V that contains S must also contain the span of S.

Definition. A subset S of a vector space V generates (or spans) V if span(S) = V. In this case, we also say that the vectors of S generate (or span) V.

1.5 Linear Dependence and Linear Independence

(pg. 35)

Definition. A subset S of a vector space V is called **linearly dependent** if there exist a finite number of distinct vectors $u_1, u_2, ..., u_n$ in S and scalars $a_1, a_2, ..., a_n$, not all zero, such that

$$a_1u_1 + a_2v_2 + \dots + a_nv_n = 0 \tag{1}$$

For any vectors $u_1, u_2, ..., u_n$, we have $a_1u_1 + a_2u_2 + ... + a_nu_n = 0$ if $a_1 = a_2 = ... = a_n = 0$. We call this the **trivial representation** of 0 as a linear combination of $u_1, u_2, ..., u_n$.

Definition. A subset S of a vector space that is not linearly dependent is called **linearly independent**. As before, we also say that the vectors of S are linearly independent.

Theorem 1.6. Let V be a vector space, and let $S_1 \subset S_2 \subset V$. If S_1 is linearly dependent, then S_2 is linearly dependent.

Corollary. Let V be a vector space, and let $S_1 \subset S_2 \subset V$. If S_2 is linearly independent, then S_1 is linearly independent.

Theorem 1.7. Let S be a linearly independent subset of a vector space V, and let v be a vector in V that is not in S. Then $S \cup \{v\}$ is linearly dependent if and only if $v \in span(S)$.

1.6 Bases and Dimension

(pg. 42)

Definition. A basis β for a vector space V is a linearly independent subset of V that generates V. If β is a basis for V, we also say that the vectors of β form a basis for V.

Theorem 1.8. Let V be a vector space and $\beta = \{u_1, u_2, ..., u_n\}$ be a subset of V. Then β is a basis for V if and only if each $v \in V$ can be uniquely expressed as a linear combination of vectors of β , that is, can be expressed in the form

$$v = a_1 v_1 + a_2 v_2 + \dots + a_n u_n \tag{2}$$

for unique scalars $a_1, a_2, ..., a_n$.

Theorem 1.9. If a vector space V is generated by a finite set S, then some subset of S is a basis for V. Hence V has a finite basis. **Theorem 1.10 (Replacement Theorem).** Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \leq n$ and there exists a subset H of G containing exactly n - m vectors such that $L \cup H$ generates V.

Corollary. Let V be a vector space having a finite basis. Then every basis for V contains the same number of vectors.

Definition. A vector space is called **finite-dimensional** if it has a basis consisting of a finite number of vectors. The unique number of vectors in each basis for V is called the **dimension** of V and is denoted by dim(V). A vector space that is not finite-dimensional is called **infinite-dimensional**.

Corollary. Let V be a vector space with dimension n. Then

- 1. Any finite generating set for V contains at least n vectors, and a generating set for V that contains exactly n vectors is a basis for V.
- 2. Any linearly independent subset of V that contains exactly n vectors is a basis for V.
- 3. Every linearly independent subset of V can be extended to a basis for V.

Theorem 1.11. Let W be a subspace of a finite-dimensional vector space V. Then W is finite-dimensional and $\dim(W) \leq \dim(V)$. Moreover, if $\dim(W) = \dim(V)$, then V = W.

Corollary. If W is a subspace of a finite-dimensional vector space V, then any basis for W can be extended to a basis for V.

2 Linear Transformations and Matrices

2.1 Linear Transformations, Null Spaces, and Ranges

(pg. 64)

Definition. Let V and W be vector spaces (over F). We call a function $T: V \to W$ a linear transformation from V to W if, for all $x, y \in V$ and $c \in F$, we have

- 1. T(x + y) = T(x) + T(y) and
- 2. T(cx) = cT(x)

Properties.

- 1. If T is linear, then T(0) = 0.
- 2. T is linear if and only if T(cx + y) = cT(x) + T(y) for all $x, y \in V$ and $c \in F$.
- 3. If T is linear, then T(x-y) = T(x) T(y) for all $x, y \in V$.
- 4. T is linear if and only if, for $x_1, x_2, ..., x_n \in V$ and $a_1, a_2, ..., a_n \in F$, we have

$$T(\sum_{i=1}^{n} a_i x_i) = \sum_{i=1}^{n} a_i T(x_i).$$
(3)

We generally use property 2 to prove that a given transformation is linear.

Definition. Let V and W be vector spaces, and let $T: V \to W$ be linear. We define the **null space** (or **kernel**) N(T) of T to be the set of all vectors x in V such that T(x) = 0; that is, $N(T) = \{x \in V : T(x) = 0\}$. We define the **range** (or **image**) R(T) of T to be the subset of W consisting of all images (under T) of vectors in V; that is, $R(T) = \{T(x): x \in V\}$.

 \mathbf{f}

Theorem 2.2. Let V and W be vector spaces and T: $V \to W$ be linear. If $\beta = \{v_1, v_2, ..., v_n\}$ is a basis for V, then

$$R(T) = span(T(\beta)) = span(\{T(v_1), T(v_2), ..., T(v_n)\}).$$
(4)

Definition. Let V and W be vector spaces, and let $T:V \to W$ be linear. If N(T) and R(T) are finitedimensional, then we define the **nullity** of T, denoted nullity(T), and the **rank** of T, denoted rank(T), to be the dimensions of N(T) and R(T), respectively.

Theorem 2.3 (Dimension Theorem). Let V and W be vector spaces and T: $V \rightarrow W$ be linear. If V is finite-dimensional, then

$$nullity(T) + rank(T) = dim(V).$$
(5)

Theorem 2.4. Let V and W be vector spaces and T: $V \to W$ be linear. Then T is one-to-one if and only if $N(T) = \{0\}$.

Theorem 2.5. Let V and W be vector spaces of equal (finite) dimension and T: $V \rightarrow W$ be linear. Then the following are equivalent.

- 1. T is one-to-one.
- 2. T is onto.
- 3. $\operatorname{rank}(T) = \dim(V)$.

Theorem 2.6. Let V and W be vector spaces over F, and suppose that $\{v_1, v_2, ..., v_n\}$ is a basis for V. For $\{w_1, w_2, ..., w_n\}$ in W, there exists exactly one linear transformation $T: V \to W$ such that $T(v_i) = w_i$ for i = 1, 2, ..., n.

Corollary. Let V and W be vector spaces, and suppose that V has a finite basis $\{v_1, v_2, ..., v_n\}$. If U, T: V \rightarrow W are linear and $U(v_i) = T(v_i)$ for i = 1, 2, ..., n, then U = T.

2.2 The Matrix Representation of a Linear Transformation

(pg. 79)

Definition. Let V be a finite-dimensional vector space. An ordered basis for V is a basis for V endowed with a specific order; that is, an ordered basis for V is a finite sequence of linearly independent vectors in V that generates V.

For the vector space F^n , we call $\{e_1, e_2, ..., e_n\}$ the standard ordered basis for F^n . Similarly, for the vector space $P_n(F)$, we call $\{1, x, ..., x^n\}$ the standard ordered basis for $P_n(F)$.

Definition. Let $\beta = \{u_1, u_2, ..., u_n\}$ be an ordered basis for a finite-dimensional vector space V. For $x \in V$, let $a_1, a_2, ..., a_n$ be the unique scalars such that

$$x = \sum_{i=1}^{n} a_i u_i. \tag{6}$$

we define the coordinate vector of x relative to β , denoted $[x]_{\beta}$, by

$$[x]_{\beta} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \tag{7}$$

Definition. Using the notation above, we call the $m \times n$ matrix A defined by $A_{ij} = a_{ij}$ the matrix representation of T in the ordered bases β and γ and write $A = [T]_{\beta}^{\gamma}$. If V = W and $\beta = \gamma$, then we write $A = [T]_{\beta}$

Notice that the jth column of A is simply $[T(v_j)]_{\gamma}$. Also observe that if $U: V \to W$ is a linear transformation such that $[U]_{\beta}^{\gamma} = [T]_{\beta}^{\gamma}$, then U = T by the corollary to Theorem 2.6.

Definition. Let $T, U: V \to W$ be arbitrary functions, where V and W are vector spaces over F, and let $a \in F$. We define $T + U: V \to W$ by (T + U)(x) = T(x) + U(x) for all $x \in V$, and $aT: V \to W$ by (aT)(x) = aT(x) for all $x \in V$.

Theorem 2.7. Let V and W be vector spaces over field F, and let T, U: $V \to W$ be linear.

- 1. For all $a \in F$, aT + U is linear.
- 2. Using the operations of addition and scalar multiplication in the preceding definition, the collection of all linear transformations from V to W is a vector space over F.

Definition. Let V and W be vector spaces over F. We denote the vector space of all linear transformations from V into W by L(V, W). In the case that V = W, we write L(V) instead.

Theorem 2.8. Let V and W be finite-dimensional vector spaces with ordered bases β and γ , respectively, and let T, U: V \rightarrow W be linear transformations. Then

- 1. $[T + U]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta} + [U]^{\gamma}_{\beta}$
- 2. $[aT]^{\gamma}_{\beta} = a[T]^{\gamma}_{\beta}$ for all scalars a

2.3 Composition of Linear Transformations and Matrix Multiplication

(pg. 86)

Theorem 2.9. Let V, W, and Z be vector spaces over the same field F, and let $T: V \to W$ and $U: W \to Z$ be linear. Then $UT: V \to Z$ is linear.

Theorem 2.10. Let V be a vector space. Let $T, U_1, U_2 \in L(V)$. Then

- 1. $T(U_1 + U_2) = TU_1 + TU_2$ and $(U_1 + U_2)T = U_1T + U_2T$
- 2. $T(U_1U_2) = (TU_1)U_2$
- 3. TI = IT = T
- 4. $a(U_1U_2) = (aU_1)U_2 = U_1(aU_2)$ for all scalars a.

Definition. Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. We define the **product** of A and B, denoted AB, to be the $m \times p$ matrix such that

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} \text{ for } 1 \le i \le m, 1 \le j \le p.$$
(8)

Theorem 2.11. Let V, W, and Z be finite-dimensional vector spaces with ordered bases α, β , and γ , respectively. Let T: V \rightarrow W and U: W \rightarrow Z be linear transformations. Then

$$[UT]^{\gamma}_{\alpha} = [U]^{\gamma}_{\beta} [T]^{\beta}_{\alpha}. \tag{9}$$

Corollary. Let V be a finite-dimensional vector space with an ordered basis β . Let T, $U \in L(V)$. Then $[UT]_{\beta} = [U]_{\beta}[T]_{\beta}$.

Definition. We define the **Kronecker delta** δ_{ij} by $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$. The $n \times n$ identity matrix I_n is defined by $(I_n)_{ij} = \delta_{ij}$. Thus, for example,

$$I_1 = (1), I_2 = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$
(10)

Theorem 2.12. Let A be an $m \times n$ matrix, B and C be $n \times p$ matrices, and D and E be $q \times m$ matrices. Then

- 1. A(B + C) = AB + AC and (D + E)A = DA + EA.
- 2. a(AB) = (aA)B and (D + E)A = DA + EA for any scalar a.
- 3. $I_m A = A = A I_n$.
- 4. If V is an n-dimensional vector space with an ordered basis β , then $[I_V]_{\beta} = I_n$.

Corollary. Let A be an $m \times n$ matrix, $B_1, B_2, ..., B_k$ be $n \times p$ matrices, $C_1, C_2, ..., C_k$ be $q \times m$ matrices, and $a_1, a_2, ..., a_k$ be scalars. Then

$$A(\sum_{i=1}^{k} a_i B_i) = \sum_{i=1}^{k} a_i A B_i$$
(11)

and

$$(\sum_{i=1}^{k} a_i C_i) A = \sum_{i=1}^{k} a_i C_i A.$$
 (12)

Theorem 2.13. Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. For each j $(1 \le j \le p)$ let u_j and v_j denote the *j*th column of AB and B, respectively. Then

1. $u_i = Av_i$

2. $v_i = Be_i$, where e_i is the jth standard vector of F^p .

Theorem 2.14. Let V and W be finite-dimensional vector spaces having ordered bases β and γ , respectively, and let T: V \rightarrow W be linear. Then, for each $u \in V$, we have

$$[T(u)]_{\gamma} = [T]^{\gamma}_{\beta}[u]_{\beta} \tag{13}$$

Definition. Let A be an $m \times n$ matrix with entries from a field F. We denote by L_A the mapping $L_A : F^n \to F^m$ defined by $L_A(x) = Ax$ (the matrix product of A and x) for each column vector $x \in F^n$. We call L_A a left-multiplication transformation.

Theorem 2.15. Let A be an $m \times n$ matrix with entries from F. Then the left-multiplication transformation $L_A: F^n \to F^m$ is linear. Furthermore, if B is any other $m \times n$ matrix (with entries from F) and β and γ are the standard ordered bases for F^n and F^m , respectively, then we have the following properties.

- 1. $[L_A]^{\gamma}_{\beta} = \mathbf{A}$
- 2. $L_A = L_B$ if and only if A = B
- 3. $L_{A+B} = L_A + L_B$ and $L_{aA} = aL_A$ for all $a \in F$.
- 4. If $T: F^n \to F^m$ is linear, then there exists a unique m×n matrix C such that $T = L_C$. In fact, $C = [T]_{\beta}^{\gamma}$.
- 5. If E is an n×p matrix, then $L_{AE} = L_A L_E$
- 6. If m = n, then $L_{I_n} = I_{F^n}$

Theorem 2.16. Let A, B, and C be matrices such that A(BC) is defined. Then (AB)C is also defined and A(BC) = (AB)C; that is, matrix multiplication is associative.

2.4 Invertibility and Isomorphisms

(pg. 99)

Definition. Let V and W be vector spaces, and let $T: U \to V$ be linear. A function $U: W \to V$ is said to be an **inverse** of T if $TU = I_W$ and $UT = I_V$. If T has an inverse, then T is said to be **invertible**. As noted in appendix B, if T is invertible, then the inverse of T is unique and is denoted by T^{-1} .

The following facts hold for invertible functions T and U.

1.
$$(TU)^{-1} = U^{-1}T^{-1}$$

- 2. $(T^{-1})^{-1} = T$; in particular, T^{-1} is invertible.
- 3. Let T: V \rightarrow W be a linear transformation, where V and W are finite-dimensional spaces of equal dimension. Then T is invertible if and only if rank(T) = dim(V).

Theorem 2.17. Let V and W be vector spaces, and let $T: V \to W$ be linear and invertible. Then $T^{-1}: W \to V$ is linear.

Definition. Let A be an $n \times n$ matrix. Then A is *invertible* if there exists an $n \times n$ matrix B such that AB = BA = 1.

If A is invertible, then the matrix B such that AB = BA = I is unique. (If C were another such matrix, then C = CI = C(AB) = (CA)B = IB = B.) The matrix B is called the **inverse** of A and is denoted by A^{-1} .

Lemma. Let T be an invertible linear transformation from V to W. Then V is finite-dimensional if and only if W is finite-dimensional. In this case, $\dim(V) = \dim(W)$.

Theorem 2.18. Let V and W be finite-dimensional vector spaces with ordered bases β and γ , respectively. Let $T: V \to W$ be linear. Then T is invertible if and only if $[T]^{\gamma}_{\beta}$ is invertible. Furthermore, $[T^{-1}]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^{-1}$.

Corollary. Let V be a finite-dimensional vector space with an ordered basis β , and let $T: V \to V$ be linear. Then T is invertible if and only if $[T]_{\beta}$ is invertible. Furthermore, $[T^{-1}]_{\beta} = ([T]_{\beta})^{-1}$.

Corollary. Let A be an $n \times n$ matrix. Then A is invertible if and only if L_A is invertible. Furthermore, $(L_A)^{-1} = L_{A^{-1}}$.

Definition. Let V and W be vector spaces. We say that V is **isomorphic** to W if there exists a linear transformation $T: V \to W$ that is invertible. Such a linear transformation is called an **isomorphism** from V onto W.

Theorem 2.19. Let V and W be finite-dimensional vector spaces (over the same field). Then V is isomorphic to W if and only if $\dim(V) = \dim(W)$.

Corollary. Let V be a vector space over F. Then V is isomorphic to F^n if and only if dim(V) = n.

Theorem 2.20. Let V and W be finite-dimensional vector spaces over F of dimensions n and m, respectively, and let β and γ be ordered bases for V and W, respectively. Then the function $\Phi: L(V, W) \to M_{m \times n}(F)$, defined by $\Phi(T) = [T]^{\gamma}_{\beta}$ for $T \in L(V, W)$, is an isomorphism.

Corollary. Let V and W be finite-dimensional vector spaces of dimensions n and m, respectively. Then L(V, W) is finite-dimensional of dimension mn.

Definition. Let β be an ordered basis for an n-dimensional vector space V over the field F. The standard representation of V with respect to β is the function $\phi_{\beta} \colon V \to F^n$, defined by $\phi_{\beta}(x) = [x]_{\beta}$ for each $x \in V$.

Theorem 2.21. For any finite-dimensional vector space V with ordered basis β , ϕ_{β} is an isomorphism.

2.5 The Change of Coordinate Matrix

(pg. 110)

Theorem 2.22. Let β and β' be two ordered bases for a finite-dimensional vector space V, and let $Q = [I_V]^{\beta}_{\beta'}$. Then

- 1. Q is invertible.
- 2. For any $v \in V$, $[v]_{\beta} = Q[v]_{\beta'}$.

Definition. The matrix $Q = [I_V]_{\beta'}^{\beta}$, defined in Theorem 2.22 is called a **change of coordinate matrix**. Because of part (b) of the theorem, we say that Q **changes** β '-coordinates into β -coordinates. Observe that if $\beta = \{x_1, x_2, ..., x_n\}$ and $\beta' = \{x'_1, x'_2, ..., x'_n\}$, then

$$x'_j = \sum_{i=1}^n Q_{ij} x_i \tag{14}$$

for j = 1, 2, ..., n; that is, the jth column of Q is $[x'_i]_{\beta}$.

Theorem 2.23. Let T be a linear operator on a finite-dimensional vector space V, and let β and β' be ordered bases for V. Suppose that Q is the change of coordinate matrix that changes β' -coordinates into β -coordinates. Then

$$[T]_{\beta'} = Q^{-1}[T]_{\beta}Q \tag{15}$$

Corollary. Let $A \in M_{m \times n}(F)$, and let γ be an ordered basis for F^n . Then $[L_A]_{\gamma} = Q^{-1}AQ$, where Q is the $n \times n$ matrix whose jth column is the jth vector of γ .

Definition. Let A and B be matrices in $M_{m \times n}(F)$. We say that B is **similar** to A if there exists an invertible matrix Q such that $B = Q^{-1}AQ$.

Aside. Determinants:

Definition. The determinant of an $n \times n$ matrix A having entries from a field F is a scalar in F, denoted by det(A) or -A, and can be computed in the following manner:

- 1. If A is 1×1 , then det(A) = A_{11} , the single entry of A.
- 2. If A is 2×2 , then det(A) = $A_{11}A_{22} A_{12}A_{21}$. For example,

$$det \begin{pmatrix} -1 & 2\\ 5 & 3 \end{pmatrix} = (-1)(3) - (2)(5) = -13$$
(16)

3. If A is $n \times n$ for n > 2, then

$$det(A) = \sum_{j=1}^{n} (-1)^{i+j} A_{ij} det(A_{ij})$$
(17)

(if the determinant is evaluated by the entries of row i of A) or

$$det(A) = \sum_{i=1}^{n} (-1)^{i+j} A_{ij} det(A_{ij})$$
(18)

(if the determinant is evaluated by the entries of column j of A), where A_{ij} is the $(n - 1) \times (n - 1)$ matrix obtained by deleting row i and column j from A.

Properties. (of the Determinant)

- 1. If B is a matrix obtained by interchanging any two rows or interchanging any two columns of an $n \times n$ matrix A, then det(B) = -det(A).
- 2. If B is a matrix obtained by multiplying each entry of some row or column of an $n \times n$ matrix A by a scalar k. then $det(B) = k \cdot det(A)$.
- 3. If B is a matrix obtained from an $n \times n$ matrix A by adding a multiple of row i to row j or a multiple of column i to column j for $i \neq j$, then det(B) = det(A).
- 4. The determinant of an upper triangular matrix is the product of its diagonal entries. In particular, det(I) = 1.
- 5. If two rows (or columns) of a matrix are identical, then the determinant of the matrix is zero.
- 6. For any $n \times n$ matrices A and B, $det(AB) = det(A) \cdot det(B)$.
- 7. An n×n matrix A is invertible if and only if det(A) $\neq 0$. Furthermore, if A is invertible, then det(A^{-1}) = $\frac{1}{det(A)}$.
- 8. For any $n \times n$ matrix A, the determinants of A and A^t are equal.
- 9. If A and B are similar matrices, then det(A) = det(B).

3 Diagonalization

3.1 Eigenvalues and Eigenvectors

(pg. 245)

Definition. A linear operator T on a finite-dimensional vector space V is called **diagonalizable** if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix. A square matrix A is called **diagonalizable** if L_A is diagonalizable.

Definition. Let T be a linear operator on a vector space V. A nonzero vector $v \in V$ is called an **eigenvector** of T if there exists a scalar λ such that $T(v) = \lambda v$. The scalar λ is called the **eigenvalue** corresponding to the eigenvector v

Let A be in $M_{m \times n}(F)$. A nonzero vector $v \in F^n$ is called an **eigenvector** of A if v is an eigenvector of L_A ; that is, if $Av = \lambda v$ for some scalar λ . The scalar λ is called the **eigenvalue** of A corresponding to the eigenvector v.

Theorem 5.1. A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there exists an ordered basis β for V consisting of eigenvectors of T. Furthermore, if T is diagonalizable, $\beta = \{v_1, v_2, ..., v_n\}$ is an ordered basis of eigenvectors of T, and $D = [T]_{\beta}$, then D is a diagonal matrix and D_{jj} is the eigenvalue corresponding to v_j for $1 \le j \le n$.

Theorem 5.2. Let $A \in M_{m \times n}(F)$. Then a scalar λ is an eigenvalue of A if and only if $det(A - \lambda I_n) = 0$.

Definition. Let $A \in M_{n \times n}(F)$. The polynomial $f(t) = det(A - tI_n)$ is called the **characteristic polynomial** of A.

Definition. Let T be a linear operator on an n-dimensional vector space V with ordered basis β . We define the **characteristic polynomial** f(t) of T to be the characteristic polynomial of $A = [T]_{\beta}$. That is, $f(t) = det(A - tI_n)$.

Theorem 5.4. Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. A vector $v \in V$ is an eigenvector of T corresponding to λ if and only if $v \neq 0$ and $v \in N(T - \lambda I)$.

3.2 Diagonalizability

(pg. 261)

Theorem 5.5. Let T be a linear operator on a vector space V, and let $\lambda_1, \lambda_2, ..., \lambda_k$ be distinct eigenvalues of T. If $v_1, v_2, ..., v_k$ are eigenvectors of T such that λ_i corresponds to v_i $(1 \le i \le k)$, then $\{v_1, v_2, ..., v_k\}$ is linearly independent.

Corollary. Let T be a linear operator on an n-dimensional vector space V. If T has n distinct eigenvalues, then T is diagonalizable.

Definition. A polynomial f(t) P(F) splits over F if there are scalars $c, a_1, ..., a_n$ (not necessarily distinct in F such that

$$f(t) = c(t - a_1)(t - a_2)...(t - a_n).$$
(19)

Theorem 5.6. The characteristic polynomial of any diagonalizable linear operator splits.

Definition. Let λ be an eigenvalue of a linear operator or matrix with the characteristic polynomial f(t). The algebraic multiplicity of λ is the largest positive integer k for which $(t - \lambda)^k$ is a factor of f(t).

Definition. Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. Define $E_{\lambda} = \{x \in V : T(x) = \lambda x\} = N(T - \lambda I_V)$. The set E_{λ} is called the **eigenspace** of T corresponding to the eigenvalue λ . Analogously, we define the **eigenspace** of a square matrix A to be the eigenspace of L_A .

Theorem 5.7. Let T be a linear operator on a finite-dimensional vector space V, and let λ be an eigenvalue of T having multiplicity m. Then $1 \leq \dim(E_{\lambda}) \leq m$.

Lemma. Let T be a linear operator, and let $\lambda_1, \lambda_2, ..., \lambda_k$ be distict eigenvalues of T. For each i = 1, 2, ..., k, let $v_i \in E_{\lambda_i}$, the eigenspace corresponding to λ_i . If

$$v_1 + v_2 + \dots + v_k = 0. (20)$$

then $v_i = 0$ for all *i*.

Theorem 5.8. Let T be a linear operator on a vector space V, and let $\lambda_1, \lambda_2, ..., \lambda_k$ be distinct eigenvalues of T. For each i = 1, 2, ..., k, let S_i be a finite linearly independent subset of the eigenspace E_{λ_i} . Then $S = S_1 \cup S_2 \cup ... \cup S_k$ is a linearly independent subset of V.

Theorem 5.9. Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits. Let $\lambda_1, \lambda_2, ..., \lambda_k$ be the distinct eigenvalues of T. Then

- 1. T is diagonalizable if and only if the multiplicity of λ_i is equal to $dim(E_{\lambda_i})$ for all i.
- 2. If T is diagonalizable and β_i is an ordered basis for E_{λ_i} , for each i, then $\beta = \beta_1 \cup \beta_2 \cup ... \cup \beta_k$ is an ordered basis for V consisting of eigenvectors of T (β is an eigenbasis).

Definition. Let $W_1, W_2, ..., W_k$ be subspaces of a vector space V. We define the **sum** of these subspaces to be the set

$$\{v_1 + v_2 + \dots + v_k : v_i \in W_i for 1 \le i \le k\},\tag{21}$$

which we denote by $W_1 + W_2 + \ldots + W_k$ or $\sum_{i=1}^k W_i$.

Definition. Let $W_1, W_2, ..., W_k$ be subspaces of a vector space V. We call V the **direct sum** of the subspaces $W_1, W_2, ..., W_k$ and write $V = W_1 \bigoplus W_2 \bigoplus ... \bigoplus W_k$, if

$$V = \sum_{i=1}^{k} W_i \tag{22}$$

and

$$W_j \cap \sum_{i \neq j} W_i = \{0\} \text{ for each } j \ (1 \le j \le k).$$

$$(23)$$

Page 11

4 Inner Product Spaces

4.1 Inner Products and Norms

(pg. 329)

Definition. Let V be a vector space over F. An *inner product* on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F, denoted $\langle x, y \rangle$, such that for all x, y, and z in V and all c in F, the following hold:

- 1. $\langle x+z,y\rangle = \langle x,y\rangle + \langle z,y\rangle$
- 2. $\langle cx, y \rangle = c \langle x, y \rangle$
- 3. $\overline{\langle x, y \rangle} = \langle y, x \rangle$, where the bar denotes complex conjugation.
- 4. $\langle x, x \rangle > 0$ if $x \neq 0$.

Definition. Let $A \in M_{m \times n}(F)$. We define the conjugate transpose or adjoint of A to be the matrix A^* such that $(A*)_{ij} = \overline{A_{ji}}$ for all i, j.

Theorem 6.1. Let V be an inner product space. Then for x. y. $z \in V$ and $c \in F$, the following statements are true.

- 1. $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$.
- 2. $\langle x, cy, \rangle = \overline{c} \langle x, y \rangle$.
- 3. $\langle x, 0 \rangle = \langle 0, x \rangle = 0.$
- 4. $\langle x, x \rangle = 0$ if and only if x = 0.
- 5. If $\langle x, y \rangle = \langle x, z \rangle$ for all $x \in V$, then y = z.

Definition. Let V be an inner product space. For $x \in V$, we define the norm or length of x by $||x|| = \sqrt{\langle x, x \rangle}$.

Theorem 6.2. Let V be an inner product space over F. Then for all $x, y \in V$ and $c \in F$, the following statements are true.

- 1. ||cx|| = |c|||x||
- 2. |x| = 0 if and only if x = 0. In any case, $|x| \ge 0$
- 3. (Cauchy Schwarz Inequality) $|\langle x, y \rangle| \le ||x|| ||y||$
- 4. (Triangle Inequality) $||x + y|| \le ||x|| + ||y||$

Definition. Let V be an inner product space. Vectors x and y in V are orthogonal (perpendicular) if $\langle x, y \rangle = 0$. A subset S of V is orthogonal if any two distinct vectors in S are orthogonal. A vector x in V is a unit vector if ||x|| = 1. Finally, a subset S of V is orthonormal if S is orthogonal and consists entirely of unit vectors.

4.2 The Gram-Schmidt Orthogonalization Process and Orthogonal Complements

(pg. 341)

Definition. Let V be an inner product space. A subset of V is an orthonormal basis for V if it is an ordered basis that is orthonormal.

Theorem 6.3. Let V be an inner product space and $S = \{v_1, v_2, ..., v_k\}$ be an orthogonal subset of V consisting of nonzero vectors. If $y \in span(S)$, then

$$y = \sum_{i=1}^{k} \frac{\langle y, v_i \rangle}{\|v_i\|^2} v_i \tag{24}$$

Corollary. If, in addition to the hypotheses of Theorem 6.3, S is orthonormal and $y \in span(S)$, then

$$y = \sum_{i=1}^{k} \langle y, v_i \rangle v_i \tag{25}$$

Corollary. Let V be an inner product space, and let S be an orthogonal subset of V consisting of nonzero vectors. Then S is linearly independent.

Theorem 6.4 (Gram-Schmidt Process). Let V be an inner product space and $S = \{w_1, w_2, ..., w_n\}$ be a linearly independent subset of V. Define $S' = \{v_1, v_2, ..., v_n\}$, where $v_1 = w_1$ and

$$v_k = w_k - \sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{\|v_j\|^2} v_j \text{ for } 2 \le k \le n$$
(26)

Theorem 6.5. Let V be a nonzero finite-dimensional inner product space. Then V has an orthonormal basis β . Furthermore, if $\beta = \{v_1, v_2, ..., v_n\}$ and $x \in V$, then

$$x = \sum_{i=1}^{n} \langle x, v_i \rangle v_i.$$
⁽²⁷⁾

Corollary. Let V be a finite-dimensional inner product space with an orthonormal basis $\beta = \{v_1, v_2, ..., v_n\}$. Let T be a linear operator on V, and let $A = [T]_{\beta}$. Then for any i and j, $A_{ij} = \langle T(v_j), v_i \rangle$.

Definition. Let β be an orthonormal subset (possibly infinite) of an inner product space V, and let $x \in V$. We define the **Fourier coefficients** of x relative to β to be the scalars $\langle x, y \rangle$, where $y \in \beta$.

Definition. Let S be a nonempty subset of an inner product space V. We define S^{\perp} to be the set of all vectors in V that are orthogonal to every vector in S; that is, $S^{\perp} = \{x \in V : \langle x, y \rangle = 0 \text{ for all } y \in S\}$. The set S^{\perp} is called the **orthogonal complement** of S.

Theorem 6.6. Let W be a finite-dimensional subspace of an inner product space V, and let $y \in V$. Then there exist unique vectors $u \in W$ and $z \in W^{\perp}$ such that y = u + z. Furthermore, if $\{v_1, v_2, ..., v_k\}$ is an orthonormal basis for W, then

$$u = \sum_{i=1}^{k} \langle y, v_i \rangle v_i.$$
⁽²⁸⁾

Corollary. In the notation of Theorem 6.6, the vector u is the unique vector in W that is "closest" to y; that is, for any $x \in W$, $||y - x|| \ge ||y - u||$, and this inequality is an equality if and only if x = u.

Definition. The vector u in the corollary is called the orthogonal projection of y on W.

Theorem 6.7. Suppose that $S = \{v_1, v_2, ..., v_k\}$ is an orthonormal set in an n-dimensional inner product space V. Then

- 1. S can be extended to an orthonormal basis $\{v_1, v_2, ..., v_k, v_{k+1}, ..., v_n\}$ for V.
- 2. If W = span(S), then $S_1 = \{v_{k+1}, v_{k+2}, ..., v_n\}$ is an orthonormal basis for W[⊥].
- 3. If W is any subspace of V, then $\dim(V) = \dim(W) + \dim(W^{\perp})$.