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Please note that I didn’t make any effort to distinguish the zero vector and the zero scalar throughout this document

1 Vector Spaces

1.1 Introduction

Theorem 1.0. Nobody cares about this section.

1.2 Vector Spaces

(pg. 6)

Definition. A vector space V over a field F consists of a set on which two operations (called addition
and scalar multiplication, respectively) are defined so that for each pair of elements x, y, in V there is a
unique element x + y in V, and for each element a in F and each element x in V there is a unique element
ax in V, such that the following conditions hold:

1. (VS 1) For all x, y in V, x + y = y + x (commutativity of addition).

2. (VS 2) For all x, y, z in V, (x + y) = z = x + (y + z) (associativity of addition)

3. (VS 3) There exists an element in V denoted by 0 such that x + 0 = x for each x in V.

4. (VS 4) For each element x in V there exists an element y in V such that x + y = 0. (y = -x)

5. (VS 5) For each element x in V, 1x = x.

6. (VS 6) For each pair of elements a, b in F, and each element x in V, (ab)x = a(bx).

7. (VS 7) For each element a in F and each pair of elements x, y in V, a(x + y) = ax + ay.

8. (VS 8) For each pair of elements a, b in F and each element x in V, (a + b)x = ax + bx

Theorem 1.1 (Cancellation Law for Vector Addition). If x, y, z are vectors in a vector space V such
that x + z = y + z, then x = y.

Corollary. The vector 0 described in (VS 3) is unique.

Corollary. The vector y=-x described in (VS 4) is unique.

Theorem 1.2. In any vector space V, the following statements are true:

1. 0x = 0 for each x ∈ V.

2. (-a)x = -(ax) = a(-x) for each a ∈ F and each x ∈ V

3. a0 = 0 for each a ∈ F.

1.3 Subspaces

(pg. 16)

Definition. A subset W of a vector space V over a field F is called a subspace of V if W is a vector space
over F with the operations of addition and scalar multiplication defined on V.

Theorem 1.3. Let V be a vector space and W a subset of V. Then W is a subspace of V if and only if the
following three conditions hold for the oprations defined in V.

1. 0V ∈ W.

2. x + y ∈ W whenever x ∈ W and y ∈ W.

3. cx ∈ W whenever c ∈ F and x ∈ W.

Theorem 1.4. Any intersection of subspaces of a vector space V is a subspace of V.
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1.4 Linear Combinations and Systems of Linear Equations

(pg. 24)

Definition. Let V be a vector space and S a nonempty subset of V. A vector v ∈ V is called a linear
combination of vectors of S if there exist a finite number of vectors u1, u2, ..., un in S and scalars a1, a2, ..., an
in F such that v = a1u1+a2u2+...+anun. In this case we also say that v is a linear combination of u1, u2, ..., un
and call a1, a2, ..., an the coefficients of the linear combination.

Definition. Let S be a nonempty subset of a vector space V. The span of S, denoted span(S), is the set
consisting of all linear combinations of the vectors in S. For convenience, we define span(0) = {0}.

Theorem 1.5. The span of any subset S of a vector space V is a subspace of V. Moreover, any subspace of
V that contains S must also contain the span of S.

Definition. A subset S of a vector space V generates (or spans) V if span(S) = V. In this case, we also
say that the vectors of S generate (or span) V.

1.5 Linear Dependence and Linear Independence

(pg. 35)

Definition. A subset S of a vector space V is called linearly dependent if there exist a finite number of
distinct vectors u1, u2, ..., un in S and scalars a1, a2, ..., an, not all zero, such that

a1u1 + a2v2 + ...+ anvn = 0 (1)

For any vectors u1, u2, ..., un, we have a1u1 + a2u2 + ...+ anun = 0 if a1 = a2 = ... = an = 0. We call this
the trivial representation of 0 as a linear combination of u1, u2, ...un.

Definition. A subset S of a vector space that is not linearly dependent is called linearly independent. As
before, we also say that the vectors of S are linearly independent.

Theorem 1.6. Let V be a vector space, and let S1 ⊂ S2 ⊂ V . If S1 is linearly dependent, then S2 is linearly
dependent.

Corollary. Let V be a vector space, and let S1 ⊂ S2 ⊂ V . If S2 is linearly independent, then S1 is linearly
independent.

Theorem 1.7. Let S be a linearly independent subset of a vector space V, and let v be a vector in V that is
not in S. Then S ∪ {v} is linearly dependent if and only if v ∈ span(S).

1.6 Bases and Dimension

(pg. 42)

Definition. A basis β for a vector space V is a linearly independent subset of V that generates V. If β is
a basis for V, we also say that the vectors of β form a basis for V.

Theorem 1.8. Let V be a vector space and β = {u1, u2, ..., un} be a subset of V. Then β is a basis for V
if and only if each v ∈ V can be uniquely expressed as a linear combination of vectors of β, that is, can be
expressed in the form

v = a1v1 + a2v2 + ...+ anun (2)

for unique scalars a1, a2, ..., an.

Theorem 1.9. If a vector space V is generated by a finite set S, then some subset of S is a basis for V.
Hence V has a finite basis.
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Theorem 1.10 (Replacement Theorem). Let V be a vector space that is generated by a set G containing
exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then m ≤ n
and there exists a subset H of G containing exactly n - m vectors such that L ∪ H generates V.

Corollary. Let V be a vector space having a finite basis. Then every basis for V contains the same number
of vectors.

Definition. A vector space is called finite-dimensional if it has a basis consisting of a finite number of
vectors. The unique number of vectors in each basis for V is called the dimension of V and is denoted by
dim(V). A vector space that is not finite-dimensional is called infinite-dimensional.

Corollary. Let V be a vector space with dimension n. Then

1. Any finite generating set for V contains at least n vectors, and a generating set for V that contains
exactly n vectors is a basis for V.

2. Any linearly independent subset of V that contains exactly n vectors is a basis for V.

3. Every linearly independent subset of V can be extended to a basis for V.

Theorem 1.11. Let W be a subspace of a finite-dimensional vector space V. Then W is finite-dimensional
and dim(W) ≤ dim(V). Moreover, if dim(W) = dim(V), then V = W.

Corollary. If W is a subspace of a finite-dimensional vector space V, then any basis for W can be extended
to a basis for V.

2 Linear Transformations and Matrices

2.1 Linear Transformations, Null Spaces, and Ranges

(pg. 64)

Definition. Let V and W be vector spaces (over F). We call a function T: V→W a linear transformation
from V to W if, for all x, y ∈ V and c ∈ F, we have

1. T(x + y) = T(x) + T(y) and

2. T(cx) = cT(x)

Properties.

1. If T is linear, then T(0) = 0.

2. T is linear if and only if T(cx + y) = cT(x) + T(y) for all x, y ∈ V and c ∈ F.

3. If T is linear, then T(x-y) = T(x) - T(y) for all x, y ∈ V.

4. T is linear if and only if, for x1, x2, ..., xn ∈ V and a1, a2, ..., an ∈ F, we have

T (

n∑
i=1

aixi) =

n∑
i=1

aiT (xi). (3)

We generally use property 2 to prove that a given transformation is linear.

Definition. Let V and W be vector spaces, and let T:V→W be linear. We define the null space (or kernel)
N(T) of T to be the set of all vectors x in V such that T(x) = 0; that is, N(T) = {x ∈ V : T (x) = 0}.
We define the range (or image) R(T) of T to be the subset of W consisting of all images (under T) of
vectors in V; that is, R(T) = {T(x): x ∈ V}.
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Theorem 2.1. Let V and W be vector spaces and T: V → W be linear. Then N(T) and R(T) are subspaces
of V and W, respectively.

f

Theorem 2.2. Let V and W be vector spaces and T: V → W be linear. If β = {v1, v2, ..., vn} is a basis for
V, then

R(T ) = span(T (β)) = span({T (v1), T (v2), ..., T (vn)}). (4)

Definition. Let V and W be vector spaces, and let T:V → W be linear.If N(T) and R(T) are finite-
dimensional, then we define the nullity of T, denoted nullity(T), and the rank of T, denoted rank(T), to be
the dimensions of N(T) and R(T), respectively.

Theorem 2.3 (Dimension Theorem). Let V and W be vector spaces and T: V → W be linear. If V is
finite-dimensional, then

nullity(T ) + rank(T ) = dim(V ). (5)

Theorem 2.4. Let V and W be vector spaces and T: V → W be linear. Then T is one-to-one if and only
if N(T) = {0}.

Theorem 2.5. Let V and W be vector spaces of equal (finite) dimension and T: V → W be linear. Then
the following are equivalent.

1. T is one-to-one.

2. T is onto.

3. rank(T) = dim(V).

Theorem 2.6. Let V and W be vector spaces over F, and suppose that {v1, v2, ..., vn} is a basis for V. For
{w1, w2, ..., wn} in W, there exists exactly one linear transformation T: V → W such that T (vi) = wi for i
= 1, 2, ..., n.

Corollary. Let V and W be vector spaces, and suppose that V has a finite basis {v1, v2, ..., vn}.
If U, T: V → W are linear and U(vi) = T (vi) for i = 1, 2, ..., n, then U = T.

2.2 The Matrix Representation of a Linear Transformation

(pg. 79)

Definition. Let V be a finite-dimensional vector space. An ordered basis for V is a basis for V endowed
with a specific order; that is, an ordered basis for V is a finite sequence of linearly independent vectors in V
that generates V.
For the vector space Fn, we call {e1, e2, ..., en} the standard ordered basis for Fn. Similarly, for the
vector space Pn(F ), we call {1, x, ..., xn} the standard ordered basis for Pn(F ).

Definition. Let β = {u1, u2, ..., un} be an ordered basis for a finite-dimensional vector space V. For x ∈ V,
let a1, a2, ..., an be the unique scalars such that

x =

n∑
i=1

aiui. (6)

we define the coordinate vector of x relative to β, denoted [x]β, by

[x]β =


a1
a2
...
an

 (7)
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Definition. Using the notation above, we call the m×n matrix A defined by Aij = aij the matrix repre-
sentation of T in the ordered bases β and γ and write A = [T ]γβ. If V = W and β = γ, then we write
A = [T ]β

Notice that the jth column of A is simply [T (vj)]γ . Also observe that if U: V → W is a linear transfor-
mation such that [U ]γβ = [T ]γβ, then U = T by the corollary to Theorem 2.6.

Definition. Let T, U: V → W be arbitrary functions, where V and W are vector spaces over F, and let a
∈ F. We define T + U : V → W by (T + U)(x) = T(x) + U(x) for all x ∈ V, and aT: V → W by (aT)(x)
= aT(x) for all x ∈ V.

Theorem 2.7. Let V and W be vector spaces over field F, and let T, U: V → W be linear.

1. For all a ∈ F, aT + U is linear.

2. Using the operations of addition and scalar multiplication in the preceding definition, the collection of
all linear transformations from V to W is a vector space over F.

Definition. Let V and W be vector spaces over F. We denote the vector space of all linear transformations
from V into W by L(V, W). In the case that V = W, we write L(V) instead.

Theorem 2.8. Let V and W be finite-dimensional vector spaces with ordered bases β and γ, respectively,
and let T, U: V → W be linear transformations. Then

1. [T + U ]γβ = [T ]γβ + [U ]γβ

2. [aT ]γβ = a[T ]γβ for all scalars a

2.3 Composition of Linear Transformations and Matrix Multiplication

(pg. 86)

Theorem 2.9. Let V, W, and Z be vector spaces over the same field F, and let T: V → W and U: W → Z
be linear. Then UT: V → Z is linear.

Theorem 2.10. Let V be a vector space. Let T, U1, U2 ∈ L(V ). Then

1. T (U1 + U2) = TU1 + TU2 and (U1 + U2)T = U1T + U2T

2. T (U1U2) = (TU1)U2

3. TI = IT = T

4. a(U1U2) = (aU1)U2 = U1(aU2) for all scalars a.

Definition. Let A be an m×n matrix and B be an n×p matrix. We define the product of A and B, denoted
AB, to be the m×p matrix such that

(AB)ij =

n∑
k=1

AikBkj for 1 ≤ i ≤ m, 1 ≤ j ≤ p. (8)

Theorem 2.11. Let V, W, and Z be finite-dimensional vector spaces with ordered bases α, β, and γ, respec-
tively. Let T: V → W and U: W → Z be linear transformations. Then

[UT ]γα = [U ]γβ [T ]βα. (9)

Corollary. Let V be a finite-dimensional vector space with an ordered basis β. Let T, U ∈ L(V). Then
[UT ]β = [U ]β [T ]β.
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Definition. We define the Kronecker delta δij by δij = 1 if i = j and δij = 0 if i 6= j. The n×n identity
matrix In is defined by (In)ij = δij. Thus, for example,

I1 = (1), I2 =

(
1 0
0 1

)
(10)

Theorem 2.12. Let A be an m×n matrix, B and C be n×p matrices, and D and E be q×m matrices. Then

1. A(B + C) = AB + AC and (D + E)A = DA + EA.

2. a(AB) = (aA)B and (D + E)A = DA + EA for any scalar a.

3. ImA = A = AIn.

4. If V is an n-dimensional vector space with an ordered basis β, then [IV ]β = In.

Corollary. Let A be an m×n matrix, B1, B2, ..., Bk be n×p matrices, C1, C2, ..., Ck be q×m matrices, and
a1, a2, ..., ak be scalars. Then

A(

k∑
i=1

aiBi) =

k∑
i=1

aiABi (11)

and

(

k∑
i=1

aiCi)A =

k∑
i=1

aiCiA. (12)

Theorem 2.13. Let A be an m×n matrix and B be an n×p matrix. For each j (1 ≤ j ≤ p) let uj and vj
denote the jth column of AB and B, respectively. Then

1. uj = Avj

2. vj = Bej , where ej is the jth standard vector of F p.

Theorem 2.14. Let V and W be finite-dimensional vector spaces having ordered bases β and γ, respectively,
and let T: V → W be linear. Then, for each u ∈ V, we have

[T (u)]γ = [T ]γβ [u]β (13)

Definition. Let A be an m×n matrix with entries from a field F. We denote by LA the mapping LA : Fn →
Fm defined by LA(x) = Ax (the matrix product of A and x) for eachc column vector x ∈ Fn. We call LA a
left-multiplication transformation.

Theorem 2.15. Let A be an m×n matrix with entries from F. Then the left-multiplication transformation
LA : Fn → Fm is linear. Furthermore, if B is any other m×n matrix (with entries from F) and β and γ are
the standard ordered bases for Fn and Fm, respectively, then we have the following properties.

1. [LA]γβ = A

2. LA = LB if and only if A = B

3. LA+B = LA + LB and LaA = aLA for all a ∈ F.

4. If T : Fn → Fm is linear, then there exists a unique m×n matrix C such that T = LC . In fact, C =
[T ]γβ .

5. If E is an n×p matrix, then LAE = LALE

6. If m = n, then LIn = IFn

Theorem 2.16. Let A, B, and C be matrices such that A(BC) is defined. Then (AB)C is also defined and
A(BC) = (AB)C; that is, matrix multiplication is associative.
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2.4 Invertibility and Isomorphisms

(pg. 99)

Definition. Let V and W be vector spaces, and let T: U → V be linear. A function U: W → V is said to be
an inverse of T if TU = IW and UT = IV . If T has an inverse, then T is said to be invertible. As noted
in appendix B, if T is invertible, then the inverse of T is unique and is denoted by T−1.

The following facts hold for invertible functions T and U.

1. (TU)−1 = U−1T−1

2. (T−1)−1 = T ; in particular, T−1 is invertible.

3. Let T: V → W be a linear transformation, where V and W are finite-dimensional spaces of equal
dimension. Then T is invertible if and only if rank(T) = dim(V).

Theorem 2.17. Let V and W be vector spaces, and let T: V → W be linear and invertible. Then T−1 :
W → V is linear.

Definition. Let A be an n×n matrix. Then A is invertible if there exists an n×n matrix B such that AB
= BA = 1.
If A is invertible, then the matrix B such that AB = BA = I is unique. (If C were another such matrix, then
C = CI = C(AB) = (CA)B = IB = B.) The matrix B is called the inverse of A and is denoted by A−1.

Lemma. Let T be an invertible linear transformation from V to W. Then V is finite-dimensional if and
only if W is finite-dimensional. In this case, dim(V) = dim(W).

Theorem 2.18. Let V and W be finite-dimensional vector spaces with ordered bases β and γ, respectively. Let
T: V → W be linear. Then T is invertible if and only if [T ]γβ is invertible. Furthermore, [T−1]βγ = ([T ]γβ)−1.

Corollary. Let V be a finite-dimensional vector space with an ordered basis β, and let T: V → V be linear.
Then T is invertible if and only if [T ]β is invertible. Furthermore, [T−1]β = ([T ]β)−1.

Corollary. Let A be an n×n matrix. Then A is invertible if and only if LA is invertible. Furthermore,
(LA)−1 = LA−1 .

Definition. Let V and W be vector spaces. We say that V is isomorphic to W if there exists a linear
transformation T: V → W that is invertible. Such a linear transformation is called an isomorphism from
V onto W.

Theorem 2.19. Let V and W be finite-dimensional vector spaces (over the same field). Then V is isomorphic
to W if and only if dim(V) = dim(W).

Corollary. Let V be a vecctor space over F. Then V is isomorphic to Fn if and only if dim(V) = n.

Theorem 2.20. Let V and W be finite-dimensional vector spaces over F of dimensions n and m, respectively,
and let β and γ be ordered bases for V and W, respectively. Then the function Φ: L(V, W) → Mm×n(F ),
defined by Φ(T ) = [T ]γβ for T ∈ L(V, W), is an isomorphism.

Corollary. Let V and W be finite-dimensional vector spaces of dimensions n and m, respectively. Then
L(V, W) is finite-dimensional of dimension mn.

Definition. Let β be an ordered basis for an n-dimensional vector space V over the field F. The standard
representation of V with respect to β is the function φβ: V → Fn, defined by φβ(x) = [x]β for each x
∈ V.

Theorem 2.21. For any finite-dimensional vector space V with ordered basis β, φβ is an isomorphism.
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2.5 The Change of Coordinate Matrix

(pg. 110)

Theorem 2.22. Let β and β’ be two ordered bases for a finite-dimensional vector space V, and let Q =
[IV ]ββ′ . Then

1. Q is invertible.

2. For any v ∈ V, [v]β = Q[v]β′ .

Definition. The matrix Q = [IV ]ββ′ , defined in Theorem 2.22 is called a change of coordinate matrix.
Because of part (b) of the theorem, we say that Q changes β’-coordinates into β-coordinates. Observe
that if β = {x1, x2, ..., xn} and β’ = {x′1, x′2, ..., x′n}, then

x′j =

n∑
i=1

Qijxi (14)

for j = 1, 2, ..., n; that is, the jth column of Q is [x′j ]β.

Theorem 2.23. Let T be a linear operator on a finite-dimensional vector spsace V, and let β and β′ be
ordered bases for V. Suppose that Q is the change of coordinate matrix that changes β′-coordinates into
β-coordinates. Then

[T ]β′ = Q−1[T ]βQ (15)

Corollary. Let A ∈ Mm×n(F ), and let γ be an ordered basis for Fn. Then [LA]γ = Q−1AQ, where Q is
the n×n matrix whose jth column is the jth vector of γ.

Definition. Let A and B be matrices in Mm×n(F ). We say that B is similar to A if there exists an
invertible matrix Q such that B = Q−1AQ.

Aside. Determinants:

Definition. The determinant of an n×n matrix A having entries from a field F is a scalar in F, denoted
by det(A) or —A—, and can be computed in the following manner:

1. If A is 1×1, then det(A) = A11, the single entry of A.

2. If A is 2×2, then det(A) = A11A22 −A12A21. For example,

det

(
−1 2
5 3

)
= (−1)(3)− (2)(5) = −13 (16)

3. If A is n×n for n > 2, then

det(A) =

n∑
j=1

(−1)i+jAijdet(Aij) (17)

(if the determinant is evaluated by the entries of row i of A) or

det(A) =

n∑
i=1

(−1)i+jAijdet(Aij) (18)

(if the determinant is evaluated by the entries of column j of A), where Aij is the (n - 1)×(n - 1) matrix
obtained by deleting row i and column j from A.

Properties. (of the Determinant)
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1. If B is a matrix obtained by interchanging any two rows or interchanging any two columns of an n×n
matrix A, then det(B) = -det(A).

2. If B is a matrix obtained by multiplying each entry of some row or column of an n×n matrix A by a
scalar k. then det(B) = k·det(A).

3. If B is a matrix obtained from an n×n matrix A by adding a multiple of row i to row j or a multiple
of column i to column j for i 6= j, then det(B) = det(A).

4. The determinant of an upper triangular matrix is the product of its diagonal entries. In particular,
det(I) = 1.

5. If two rows (or columns) of a matrix are identical, then the determinant of the matrix is zero.

6. For any n×n matrices A and B, det(AB) = det(A)· det(B).

7. An n×n matrix A is invertible if and only if det(A) 6= 0. Furthermore, if A is invertible, then det(A−1)
= 1

det(A) .

8. For any n×n matrix A, the determinants of A and At are equal.

9. If A and B are similar matrices, then det(A) = det(B).

3 Diagonalization

3.1 Eigenvalues and Eigenvectors

(pg. 245)

Definition. A linear operator T on a finite-dimensional vector space V is called diagonalizable if there is
an ordered basis β for V such that [T]β is a diagonal matrix. A square matrix A is called diagonalizable
if LA is diagonalizable.

Definition. Let T be a linear operator on a vector space V. A nonzero vector v ∈ V is called an eigenvector
of T if there exists a scalar λ such that T(v) = λv. The scalar λ is called the eigenvalue corresponding to
the eigenvector v
Let A be in Mm×n(F ). A nonzero vector v ∈ Fn is called an eigenvector of A if v is an eigenvector of
LA; that is, if Av = λv for some scalar λ. The scalar λ is called the eigenvalue of A corresponding to the
eigenvector v.

Theorem 5.1. A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if
there exists an ordered basis β for V consisting of eigenvectors of T. Furthermore, if T is diagonalizable,
β = {v1, v2, ..., vn} is an ordered basis of eigenvectors of T, and D = [T ]β, then D is a diagonal matrix and
Djj is the eigenvalue corresponding to vj for 1 ≤ j ≤ n.

Theorem 5.2. Let A ∈Mm×n(F). Then a scalar λ is an eigenvalue of A if and only if det(A - λIn) = 0.

Definition. Let A ∈Mn×n(F ). The polynomial f(t) = det(A - tIn) is called the characteristic polynomial
of A.

Definition. Let T be a linear operator on an n-dimensional vector space V with ordered basis β. We define
the characteristic polynomial f(t) of T to be the characteristic polynomial of A = [T ]β. That is, f(t) =
det(A - tIn).

Theorem 5.4. Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. A vector v
∈ V is an eigenvector of T corresponding to λ if and only if v 6= 0 and v ∈ N(T - λI).
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3.2 Diagonalizability

(pg. 261)

Theorem 5.5. Let T be a linear operator on a vector space V, and let λ1, λ2, ..., λk be distinct eigenvalues
of T. If v1, v2, ..., vk are eigenvectors of T such that λi corresponds to vi (1 ≤ i ≤ k), then {v1, v2, ..., vk} is
linearly independent.

Corollary. Let T be a linear operator on an n-dimensional vector space V. If T has n distinct eigenvalues,
then T is diagonalizable.

Definition. A polynomial f(t) P(F) splits over F if there are scalars c, a1, ..., an (not necessarily distinct
in F such that

f(t) = c(t− a1)(t− a2)...(t− an). (19)

Theorem 5.6. The characteristic polynomial of any diagonalizable linear operator splits.

Definition. Let λ be an eigenvalue of a linear operator or matrix with the characteristic polynomial f(t).
The algebraic multiplicity of λ is the largest positive integer k for which (t - λ)k is a factor of f(t).

Definition. Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. Define Eλ
= {x ∈ V : T (x) = λx} = N(T − λIV . The set Eλ is called the eigenspace of T corresponding to the
eigenvalue λ. Analogously, we define the eigenspace of a square matrix A to be the eigenspace of LA.

Theorem 5.7. Let T be a linear operator on a finite-dimensional vector space V, and let λ be an eigenvalue
of T having multiplicity m. Then 1 ≤ dim(Eλ) ≤ m.

Lemma. Let T be a linear operator, and let λ1, λ2, ..., λk be distict eigenvalues of T. For each i = 1, 2, ...,
k, let vi ∈ Eλi

, the eigenspace corresponding to λi. If

v1 + v2 + ...+ vk = 0. (20)

then vi = 0 for all i.

Theorem 5.8. Let T be a linear operator on a vector space V, and let λ1, λ2, ..., λk be distinct eigenvalues
of T. For each i = 1, 2, ..., k, let Si be a finite linearly independent subset of the eigenspace Eλi

. Then S =
S1 ∪ S2 ∪ ... ∪ Sk is a linearly independent subset of V.

Theorem 5.9. Let T be a linear operator on a finite-dimensional vector space V such that the characteristic
polynomial of T splits. Let λ1, λ2, ..., λk be the distinct eigenvalues of T. Then

1. T is diagonalizable if and only if the multiplicity of λi is equal to dim(Eλi) for all i.

2. If T is diagonalizable and βi is an ordered basis for Eλi
, for each i, then β = β1 ∪ β2 ∪ ... ∪ βk is an

ordered basis for V consisting of eigenvectors of T (β is an eigenbasis).

Definition. Let W1,W2, ...,Wk be subspaces of a vector space V. We define the sum of these subspaces to
be the set

{v1 + v2 + ...+ vk : vi ∈Wifor1 ≤ i ≤ k}, (21)

which we denote by W1 +W2 + ...+Wk or
∑k
i=1Wi.

Definition. Let W1,W2, ...,Wk be subspaces of a vector space V. We call V the direct sum of the subspaces
W1,W2, ...,Wk and write V = W1

⊕
W2

⊕
...
⊕
Wk, if

V =

k∑
i=1

Wi (22)

and
Wj ∩

∑
i 6=j

Wi = {0} for each j (1 ≤ j ≤ k). (23)
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4 Inner Product Spaces

4.1 Inner Products and Norms

(pg. 329)

Definition. Let V be a vector space over F. An inner product on V is a function that assigns, to every
ordered pair of vectors x and y in V, a scalar in F, denoted 〈x, y〉, such that for all x, y, and z in V and all
c in F, the following hold:

1. 〈x+ z, y〉 = 〈x, y〉+ 〈z, y〉

2. 〈cx, y〉 = c〈x, y〉

3. 〈x, y〉 = 〈y, x〉, where the bar denotes complex conjugation.

4. 〈x, x〉 > 0 if x 6= 0.

Definition. Let A ∈Mm×n(F ). We define the conjugate transpose or adjoint of A to be the matrix A*
such that (A∗)ij = Aji for all i, j.

Theorem 6.1. Let V be an inner product space. Then for x. y. z ∈ V and c ∈ F, the following statements
are true.

1. 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉.

2. 〈x, cy, 〉 = c〈x, y〉.

3. 〈x, 0〉 = 〈0, x〉 = 0.

4. 〈x, x〉 = 0 if and only if x = 0.

5. If 〈x, y〉 = 〈x, z〉 for all x ∈ V , then y = z.

Definition. Let V be an inner product space. For x ∈ V, we define the norm or length of x by ‖x‖ =√
〈x, x〉.

Theorem 6.2. Let V be an inner product space over F. Then for all x, y ∈ V and c ∈ F, the following
statements are true.

1. ‖cx‖ = |c|‖x‖

2. |x| = 0 if and only if x = 0. In any case, |x| ≥ 0

3. (Cauchy Schwarz Inequality) |〈x, y〉| ≤ ‖x‖‖y‖

4. (Triangle Inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Definition. Let V be an inner product space. Vectors x and y in V are orthogonal (perpendicular) if
〈x, y〉 = 0. A subset S of V is orthogonal if any two distinct vectors in S are orthogonal. A vector x in V is
a unit vector if ‖x‖ = 1. Finally, a subset S of V is orthonormal if S is orthogonal and consists entirely
of unit vectors.
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4.2 The Gram-Schmidt Orthogonalization Process and Orthogonal Comple-
ments

(pg. 341)

Definition. Let V be an inner product space. A subset of V is an orthonormal basis for V if it is an
ordered basis that is orthonormal.

Theorem 6.3. Let V be an inner product space and S = {v1, v2, ..., vk} be an orthogonal subset of V consisting
of nonzero vectors. If y ∈ span(S), then

y =

k∑
i=1

〈y, vi〉
‖vi‖2

vi (24)

Corollary. If, in addition to the hypotheses of Theorem 6.3, S is orthonormal and y ∈ span(S), then

y =

k∑
i=1

〈y, vi〉vi (25)

Corollary. Let V be an inner product space, and let S be an orthogonal subset of V consisting of nonzero
vectors. Then S is linearly independent.

Theorem 6.4 (Gram-Schmidt Process). Let V be an inner product space and S = {w1, w2, ..., wn} be a
linearly independent subset of V. Define S’ = {v1, v2, ..., vn}, where v1 = w1 and

vk = wk −
k−1∑
j=1

〈wk, vj〉
‖vj‖2

vj for 2 ≤ k ≤ n (26)

Theorem 6.5 . Let V be a nonzero finite-dimensional inner product space. Then V has an orthonormal
basis β. Furthermore, if β = {v1, v2, ..., vn} and x ∈ V, then

x =

n∑
i=1

〈x, vi〉vi. (27)

Corollary. Let V be a finite-dimensional inner product space with an orthonormal basis β = {v1, v2, ..., vn}.
Let T be a linear operator on V, and let A = [T]β. Then for any i and j, Aij = 〈T (vj), vi〉.
Definition. Let β be an orthonormal subset (possibly infinite) of an inner product space V, and let x ∈ V.
We define the Fourier coefficients of x relative to β to be the scalars 〈x, y〉, where y ∈ β.

Definition. Let S be a nonempty subset of an inner product space V. We define S⊥ to be the set of all
vectors in V that are orthogonal to every vector in S; that is, S⊥ = {x ∈ V : 〈x, y〉 = 0 for all y ∈ S}. The
set S⊥ is called the orthogonal complement of S.

Theorem 6.6. Let W be a finite-dimensional subspace of an inner product spaceV, and let y ∈ V. Then
there exist unique vectors u ∈ W and z ∈ W⊥ such that y = u + z. Furthermore, if {v1, v2, ..., vk} is an
orthonormal basis for W, then

u =

k∑
i=1

〈y, vi〉vi. (28)

Corollary. In the notation of Theoem 6.6, the vector u is the unique vector in W that is ”closest” to y; that
is, for any x ∈ W, ‖y − x‖ ≥ ‖y − u‖, and this inequality is an equality if and only if x = u.

Definition. The vector u in the corollary is called the orthogonal projection of y on W.

Theorem 6.7. Suppose that S = {v1, v2, ..., vk} is an orthonormal set in an n-dimensional inner product
space V. Then

1. S can be extended to an orthonormal basis {v1, v2, ..., vk, vk+1, ..., vn} for V.

2. If W = span(S), then S1 = {vk+1.vk+2, ..., vn} is an orthonormal basis for W⊥.

3. If W is any subspace of V, then dim(V) = dim(W) + dim(W⊥).
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